932 resultados para Translation initiation
Resumo:
Through a screen to identify genes that induce multi-drug resistance when overexpressed, we have identified a fission yeast homolog of Int-6, a component of the human translation initiation factor eIF3. Disruption of the murine Int-6 gene by mouse mammary tumor virus (MMTV) has been implicated previously in tumorigenesis, although the underlying mechanism is not yet understood. Fission yeast Int6 was shown to interact with other presumptive components of eIF3 in vivo, and was present in size fractions consistent with its incorporation into a 43S translation preinitiation complex. Drug resistance induced by Int6 overexpression was dependent on the AP-1 transcription factor Pap1, and was associated with increased abundance of Pap1-responsive mRNAs, but not with Pap1 relocalization. Fission yeast cells lacking the int6 gene grew slowly. This growth retardation could be corrected by the expression of full length Int6 of fission yeast or human origin, or by a C-terminal fragment of the fission yeast protein that also conferred drug resistance, but not by truncated human Int-6 proteins corresponding to the predicted products of MMTV-disrupted murine alleles. Studies in fission yeast may therefore help to explain the ways in which Int-6 function can be perturbed during MMTV-induced mammary tumorigenesis.
Resumo:
Resistance training results in skeletal muscle hypertrophy, but the molecular signalling mechanisms responsible for this altered phenotype are incompletely understood. We used a resistance training (RT) protocol consisting of three sessions [day 1 (d1), day 3 (d3), day 5 (d5)] separated by 48 h recovery (squat exercise, 4 sets × 10 repetitions, 3 min recovery) to determine early signalling responses to RT in rodent skeletal muscle. Six animals per group were killed 3 h after each resistance training session and 24 and 48 h after the last training session (d5). There was a robust increase in TNF? protein expression, and IKKSer180/181 and p38MAPK Thr180/Tyr182 phosphorylation on d1 (P < 0.05), which abated with subsequent RT, returning to control levels by d5 for TNF? and IKK Ser180/181. There was a trend for a decrease in MuRF-1 protein expression, 48 h following d5 of training (P = 0.08). Notably, muscle myofibrillar protein concentration was elevated compared to control 24 and 48 h following RT (P < 0.05). AktSer473 and mTORSer2448 phosphorylation were unchanged throughout RT. Phosphorylation of p70S6k Thr389 increased 3 h post-exercise on d1, d3 and d5 (P < 0.05), whilst phosphorylation of S6Ser235/236 increased on d1 and d3 (P < 0.05). Our results show a rapid attenuation of inflammatory signalling with repeated bouts of resistance exercise, concomitant with summation in translation initiation signalling in skeletal muscle. Indeed, the cumulative effect of these signalling events was associated with myofibrillar protein accretion, which likely contributes to the early adaptations in response to resistance training overload in the skeletal muscle.
Resumo:
We examined acute molecular responses in skeletal muscle to repeated sprint and resistance exercise bouts. Six men [age, 24.7 ± 6.3 yr; body mass, 81.6 ± 7.3 kg; peak oxygen uptake, 47 ± 9.9 ml·kg -1 ·min -1; one repetition maximum (1-RM) leg extension 92.2 ± 12.5 kg; means ± SD] were randomly assigned to trials consisting of either resistance exercise (8 × 5 leg extension, 80% 1-RM) followed by repeated sprints (10 × 6 s, 0.75 N·m torque·kg -1) or vice-versa. Muscle biopsies from vastus lateralis were obtained at rest, 15 min after each exercise bout, and following 3-h recovery to determine early signaling and mRNA responses. There was divergent exercise order-dependent phosphorylation of p70 S6K (S6K). Specifically, initial resistance exercise increased S6K phosphorylation (?75% P < 0.05), but there was no effect when resistance exercise was undertaken after sprints. Exercise decreased IGF-I mRNA following 3-h recovery (?50%, P = 0.06) independent of order, while muscle RING finger mRNA was elevated with a moderate exercise order effect (P < 0.01). When resistance exercise was followed by repeated sprints PGC-1? mRNA was increased (REX1-SPR2; P = 0.02) with a modest distinction between exercise orders. Repeated sprints may promote acute interference on resistance exercise responses by attenuating translation initiation signaling and exacerbating ubiquitin ligase expression. Indeed, repeated sprints appear to generate the overriding acute exercise-induced response when undertaking concurrent repeated sprint and resistance exercise. Accordingly, we suggest that sprint-activities are isolated from resistance training and that adequate recovery time is considered within periodized training plans that incorporate these divergent exercise modes.
Resumo:
Leucine is a key amino acid for initiating translation in muscle cells, but the dose-dependent effects of leucine on intracellular signaling are poorly characterized. This study examined the effect that increasing doses of leucine would have on changes in mechanistic target of rapamycin (mTOR)–mediated signaling, rates of protein synthesis, and cell size in C2C12 cells. We hypothesized that a leucine “threshold” exists, which represents the minimum stimulus required to initiate mTOR signaling in muscle cells. Acute exposure to 1.5, 3.2, 5.0, and 16.1 mM leucine increased phosphorylation of mTORSer2448 (~1.4-fold; P < .04), 4E-BP1 Thr37/46 (~1.9-fold; P < .001), and rpS6Ser235/6 (~2.3-fold; P < .001). However, only p70S6kThr389 exhibited a dose-dependent response to leucine with all treatments higher than control (~4-fold; P < .001) and at least 5 mM higher than the 1.5-mM concentration (1.2-fold; P < .02). Rates of protein synthesis were not altered by any treatment. Seven days of exposure to 0.5, 1.5, 5.0, and 16.5 mM leucine resulted in an increase in cell size in at least 5 mM treatments (~1.6-fold, P < .001 vs control). Our findings indicate that even at low leucine concentrations, phosphorylation of proteins regulating translation initiation signaling is enhanced. The phosphorylation of p70S6kThr389 follows a leucine dose-response relationship, although this was not reflected by the acute protein synthetic response. Nevertheless, under the conditions of the present study, it appears that leucine concentrations of at least 5 mM are necessary to enhance cell growth.
Resumo:
Small open reading frames (sORFs) are an often overlooked feature of plant genomes. Initially found in plant viral RNAs and considered an interesting curiosity, an increasing number of these sORFs have been shown to encode functional peptides or play a regulatory role. The recent discovery that many of these sORFs initiate with start codons other than AUG, together with the identification of functional small peptides encoded in supposedly noncoding primary miRNA transcripts (pri-miRs), has drastically increased the number of potentially functional sORFs within the genome. Here we review how advances in technology, notably ribosome profiling (RP) assays, are complementing bioinformatics and proteogenomic methods to provide powerful ways to identify these elusive features of plant genomes, and highlight the regulatory roles sORFs can play.
Resumo:
Translation initiation of hepatitis C virus (HCV) RNA is the initial obligatory step of the viral life cycle, mediated through the internal ribosome entry site (IRES) present in the 5'-untranslated region (UTR). Initiation on the HCV IRES is mediated by multiple structure-specific interactions between IRES RNA and host 40S ribosomal subunit. In the present study we demonstrate that the SLIIIef domain, in isolation from other structural elements of HCV IRES, retain the ability to interact with 40S ribosome subunit. A small RNA SLRef, mimicking the SLIIIef domain was found to interact specifically with human La protein and the ribosomal protein S5 and selectively inhibit HCV RNA translation. More importantly, SLRef RNA showed significant suppression of replication in HCV monocistronic replicon and decrease of negative strand synthesis in HCV cell culture system. Finally, using Sendai virus based virosome, the targeted delivery of SLRef RNA into mice liver succeeded in selectively inhibiting HCV IRES mediated translation in vivo.
Resumo:
p53 is a well known tumor suppressor protein that plays a critical role in cell cycle arrest and apoptosis. It has several isoforms which are produced by transcriptional and posttranscriptional regulatory mechanisms. p53 mRNA has been demonstrated to be translated into two isoforms, full-length p53 (FL-p53) and a truncated isoform N-p53 by the use of alternative translation initiation sites. The mechanism of translation regulation of these two isoforms was further elucidated by the discovery of IRES elements in the p53 mRNA. These two IRESs were shown to regulate the translation of p53 and N-p53 in a distinct cell-cycle phase-dependent manner. This review focuses on the current understanding of the regulation of p53 IRES mediated translation and the role of cis and trans acting factors that influence expression of p53 isoforms. (C) 2013 John Wiley & Sons, Ltd.
Resumo:
In a recent Nature paper, Hashem et al. attempted to probe deeper into the elusive role of eIF3 in translation initiation of viruses with hepatitis C virus-like internal ribosome entry sites (IRESs), but instead uncovered a surprising role of these IRESs in displacing eIF3 from the 40S subunit, favoring viral translation.
Resumo:
Translation initiation in Hepatitis C Virus (HCV) is mediated by Internal Ribosome Entry Site (IRES), which is independent of cap-structure and uses a limited number of canonical initiation factors. During translation initiation IRES-40S complex formation depends on high affinity interaction of IRES with ribosomal proteins. Earlier, it has been shown that ribosomal protein S5 (RPS5) interacts with HCV IRES. Here, we have extensively characterized the HCV IRES-RPS5 interaction and demonstrated its role in IRES function. Computational modelling and RNA-protein interaction studies demonstrated that the beta hairpin structure within RPS5 is critically required for the binding with domains II and IV. Mutations disrupting IRES-RPS5 interaction drastically reduced the 80S complex formation and the corresponding IRES activity. Computational analysis and UV cross-linking experiments using various IRES-mutants revealed interplay between domains II and IV mediated by RPS5. In addition, present study demonstrated that RPS5 interaction is unique to HCV IRES and is not involved in 40S-3 ` UTR interaction. Further, partial silencing of RPS5 resulted in preferential inhibition of HCV RNA translation. However, global translation was marginally affected by partial silencing of RPS5. Taken together, results provide novel molecular insights into IRES-RPS5 interaction and unravel its functional significance in mediating internal initiation of translation.
Resumo:
A doença de Parkinson (DP) é a segunda doença neurodegenerativa mais frequente no mundo, afetando 1-2% da população acima de 65 anos, caracterizada clinicamente por tremor em repouso, bradicinesia, instabilidade postural e rigidez muscular. Essas manifestações surgem devido à degeneração neuronal progressiva e à presença de inclusões proteicas ricas em α-sinucleína. A DP é decorrente da interação entre fatores ambientais e genéticos, e entre os fatores genéticos, variantes exônicas de transmissão dominante nos genes LRRK2 (leucine-rich repeat kinase 2), VPS35 (vacuolar protein sorting 35) e EIF4G1 (eukaryotic translation initiation factor 4-gamma 1) têm sido associadas à etiologia da doença. Entretanto, estudos sobre o efeito dessas variantes na população brasileira são raros ou inexistentes. Por essa razão, neste trabalho rastreamos mutações nos genes VPS35 (p.D620N; p.R524W), EIF4G1 (p.R1205H; p.A502V) e LRRK2 (p.G2019S) em uma amostra de 582 pacientes brasileiros com DP não aparentados e 329 indivíduos controles saudáveis. Além disso, conduzimos o primeiro estudo caso-controle para análise de variantes exônicas raras (p.Q1111H, p.T1410M, p.M1646T, p.S1761R, p.Y2189C) e comuns (p.N551K, p.R1398H, p.K1423K) no gene LRRK2 em um subgrupo de 329 pacientes brasileiros com DP, não aparentados, naturais da região sudeste. Esse subgrupo foi analisado e comparado com 222 indivíduos controles saudáveis a fim de verificar associações dessas variantes e a DP. Em relação às mutações dos genes VPS35 e EIF4G1, não foram encontradas alterações nos pacientes com DP. A mutação p.G2019S no gene LRRK2 foi encontrada em 15 probandos (2,6%), dos quais 9 são do sexo feminino (64,3%). O tremor em repouso foi observado em 47,36% dos pacientes com a mutação p.G2019S como primeiro sintoma motor. As análises das variantes raras no gene LRRK2 não revelaram qualquer associação estatisticamente significante. Entre as variantes comuns, a p.K1423K mostrou evidência de associação de risco com a DP (p<0,05) na estratificação contendo o grupo de indivíduos com história familiar da doença e para as variantes p.N551K e p.R1398H não foram observadas associações. A análise do haplótipo p.N551K-p.R1398H-p.K1423K revelou associação de proteção na amostra sudeste e na estratificação Rio de Janeiro (p<0,05). Esse haplótipo não está em desequilíbrio de ligação na amostra de 222 indivíduos controles brasileiros analisados (r2≤45). Os resultados obtidos neste estudo representam contribuições valiosas ao entendimento da relação entre as variantes genéticas estudadas e o risco de desenvolvimento da doença de Parkinson, principalmente no que se refere aos endofenótipos associados.
Resumo:
Comparative analyses of differentially expressed genes between somatic cell nuclear transfer (SCNT) embryos and zygote-developing (ZD) embryos are important for understanding the molecular mechanism underlying the reprogramming processes. Herein, we used the suppression subtractive hybridization approach and from more than 2900 clones identified 96 differentially expressed genes between the SCNT and ZD embryos at the dome stage in zebrafish. We report the first database of differentially expressed genes in zebrafish SCNT embryos. Collectively, our findings demonstrate that zebrafish SCNT embryos undergo significant reprogramming processes during the dome stage. However, most differentially expressed genes are down-regulated in SCNT embryos, indicating failure of reprogramming. Based on Ensembl description and Gene Ontology Consortium annotation, the problems of reprogramming at the dome stage may occur during nuclear remodeling, translation initiation, and regulation of the cell cycle. The importance of regulation from recipient oocytes in cloning should not be underestimated in zebrafish.
Resumo:
Cross-species nuclear transfer (NT) has been used to retain the genetic viability of a species near extinction. However, unlike intra-species NT, most embryos produced by cross-species NT were unable to develop to later stages due to incompatible nucleocytoplasmic interactions between the donor nuclei and the recipient cytoplasm from different species. To study the early nucleocytoplasmic interaction in cross-species NT, two laboratory fish species (zebrafish and rare minnow) from different subfamilies were used to generate cross-subfamily NT embryos in the present study. Suppression subtractive hybridization (SSH) was performed to screen out differentially expressed genes from the forward and reverse subtractive cDNA libraries. After dot blot and real-time PCR analysis, 80 of 500 randomly selective sequences were proven to be differentially expressed in the cloned embryos. Among them, 45 sequences shared high homology with 28 zebrafish known genes, and 35 sequences were corresponding to 22 novel expressed sequence tags (ESTs). Based on functional clustering and literature mining analysis, up-and down-regulated genes in the cross-subfamily cloned embryos were mostly relevant to transcription and translation initiation, cell cycle regulation, protein binding, etc. To our knowledge, this is the first report on the determination of genes involved in the early development of cross-species NT embryos of fish. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Background: Pea encodes eukaryotic translation initiation factor eIF4E (eIF4E(S)), which supports the multiplication of Pea seed-borne mosaic virus (PSbMV). In common with hosts for other potyviruses, some pea lines contain a recessive allele (sbm1) encoding a mutant eIF4E (eIF4E(R)) that fails to interact functionally with the PSbMV avirulence protein, VPg, giving genetic resistance to infection.
Resumo:
The correct site for translation initiation for Escherichia coli WecA (Rfe), presumably involved in catalyzing the transfer of N-acetylglucosamine 1-phosphate to undecaprenylphosphate, was determined by using its FLAG-tagged derivatives. The N-terminal region containing three predicted transmembrane helices was found to be necessary for function but not for membrane localization of this protein.
Resumo:
Pancreatic cancer remains as one of the most deadly cancers, and responds poorly to current therapies. The prognosis is extremely poor, with a 5-year survival of less than 5%. Therefore, search for new effective therapeutic drugs is of pivotal need and urgency to improve treatment of this incurable malignancy. Synthetic alkyl-lysophospholipid analogs (ALPs) constitute a heterogeneous group of unnatural lipids that promote apoptosis in a wide variety of tumor cells. In this study, we found that the anticancer drug edelfosine was the most potent ALP in killing human pancreatic cancer cells, targeting endoplasmic reticulum (ER). Edelfosine was taken up in significant amounts by pancreatic cancer cells and induced caspase-and mitochondrial-mediated apoptosis. Pancreatic cancer cells show a prominent ER and edelfosine accumulated in this subcellular structure, inducing a potent ER stress response, with caspase-4, BAP31 and c-Jun NH 2-terminal kinase (JNK) activation, CHOP/GADD153 upregulation and phosphorylation of eukaryotic translation initiation factor 2 a-subunit that eventually led to cell death. Oral administration of edelfosine in xenograft mouse models of pancreatic cancer induced a significant regression in tumor growth and an increase in apoptotic index, as assessed by TUNEL assay and caspase-3 activation in the tumor sections. The ER stress-associated marker CHOP/GADD153 was visualized in the pancreatic tumor isolated from edelfosine-treated mice, indicating a strong in vivo ER stress response. These results suggest that edelfosine exerts its pro-apoptotic action in pancreatic cancer cells, both in vitro and in vivo, through its accumulation in the ER, which leads to ER stress and apoptosis. Thus, we propose that the ER could be a key target in pancreatic cancer, and edelfosine may constitute a prototype for the development of a new class of antitumor drugs targeting the ER. © 2012 Macmillan Publishers Limited All rights reserved.