954 resultados para Transformers : Dark of the Moon
Resumo:
The [Ru(phen)2(dppz)]2+ complex (1) is non-emissive in water but is highly luminescent in organic solvents or when bound to DNA, making it a useful probe for DNA binding. To date, a complete mechanistic explanation for this “light-switch” effect is still lacking. With this in mind we have undertaken an ultrafast time resolved infrared (TRIR) study of 1 and directly observe marker bands between 1280–1450 cm-1, which characterise both the emissive “bright” and the non-emissive “dark” excited states of the complex, in CD3CN and D2O respectively. These characteristic spectral features are present in the [Ru(dppz)3]2+ solvent light-switch complex but absent in [Ru(phen)3]2+, which is luminescent in both solvents. DFT calculations show that the vibrational modes responsible for these characteristic bands are predominantly localised on the dppz ligand. Moreover, they reveal that certain vibrational modes of the “dark” excited state couple with vibrational modes of two coordinating water molecules, and through these to the bulk solvent, thus providing a new insight into the mechanism of the light-switch effect. We also demonstrate that the marker bands for the “bright” state are observed for both L- and D enantiomers of 1 when bound to DNA and that photo-excitation of the complex induces perturbation of the guanine and cytosine carbonyl bands. This perturbation is shown to be stronger for the L enantiomer, demonstrating the different binding site properties of the two enantiomers and the ability of this technique to determine the identity and nature of the binding site of such intercalators.
Resumo:
Based on perturbation theory, we study the dynamics of how dark matter and dark energy in the collapsing system approach dynamical equilibrium when they are in interaction. We find that the interaction between dark sectors cannot ensure the dark energy to fully cluster along with dark matter. When dark energy does not trace dark matter, we present a new treatment on studying the structure formation in the spherical collapsing system. Furthermore we examine the cluster number counts dependence on the interaction between dark sectors and analyze how dark energy inhomogeneities affect cluster abundances. It is shown that cluster number counts can provide specific signature of dark sectors interaction and dark energy inhomogeneities.
Resumo:
We study the mutual interaction between the dark sectors (dark matter and dark energy) of the Universe by resorting to the extended thermodynamics of irreversible processes and constrain the former with supernova type Ia data. As a by-product, the present dark matter temperature results are not extremely small and can meet the independent estimate of the temperature of the gas of sterile neutrinos.
Resumo:
We investigate the influence of ail interaction between dark energy and dark matter upon the dynamics of galaxy clusters. We obtain file general Layser-Irvine equation in the presence of interactions, and find how, in that case. the virial theorem stands corrected. Using optical, X-ray and weak lensing data from 33 relaxed galaxy clusters, we put constraints on the strength of the coupling between the dark sectors. Available data Suggests that this coupling is small but positive, indicating that dark energy might be decaying into dark matter. Systematic effects between the several mass estimates, however, should be better known, before definitive conclusions oil the magnitude and significance of this coupling could be established. (C) 2009 Published by Elsevier B.V.
Resumo:
We consider perturbations in a cosmological model with a small coupling between dark energy and dark matter. We prove that the stability of the curvature perturbation depends on the type of coupling between dark sectors. When the dark energy is of quintessence type, if the coupling is proportional to the dark matter energy density, it will drive the instability in the curvature perturbations: however if the coupling is proportional to the energy density of dark energy, there is room for the stability in the curvature perturbations. When the dark energy is of phantom type, the perturbations are always stable, no matter whether the coupling is proportional to the one or the other energy density. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We present a thermodynamical description of the interaction between holographic dark energy and dark matter. If holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. A small interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. From this correction we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests: (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We present the results of a new, non-parametric method to reconstruct the Galactic dark matter profile directly from observations. Using the latest kinematic data to track the total gravitational potential and the observed distribution of stars and gas to set the baryonic component, we infer the dark matter contribution to the circular velocity across the Galaxy. The radial derivative of this dynamical contribution is then estimated to extract the dark matter profile. The innovative feature of our approach is that it makes no assumption on the functional form or shape of the profile, thus allowing for a clean determination with no theoretical bias. We illustrate the power of the method by constraining the spherical dark matter profile between 2.5 and 25 kpc away from the Galactic center. The results show that the proposed method, free of widely used assumptions, can already be applied to pinpoint the dark matter distribution in the Milky Way with competitive accuracy, and paves the way for future developments.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the interaction between dark sectors by considering the momentum transfer caused by the dark matter scattering elastically within the dark energy fluid. Describing the dark scattering analogy to the Thomson scattering which couples baryons and photons, we examine the impact of the dark scattering in CMB observations. Performing global fitting with the latest observational data, we find that for a dark energy equation of state w < -1, the CMB gives tight constraints on dark matter-dark energy elastic scattering. Assuming a dark matter particle of proton mass, we derive an elastic scattering cross section of sigma(D) < 3.295 x 10(-10)sigma(T) where sigma(T) is the cross section of Thomson scattering. For w > -1, however, the constraints are poor. For w = -1, sigma(D) can formally take any value.
Resumo:
The nature of the dark matter in the Universe is one of the greatest mysteries in modern astronomy. The neutralino is a nonbaryonic dark matter candidate in minimal supersymmetric extensions to the standard model of particle physics. If the dark matter halo of our galaxy is made up of neutralinos some would become gravitationally trapped inside massive bodies like the Earth. Their pair-wise annihilation produces neutrinos that can be detected by neutrino experiments looking in the direction of the centre of the Earth. The AMANDA neutrino telescope, currently the largest in the world, consists of an array of light detectors buried deep in the Antarctic glacier at the geographical South Pole. The extremely transparent ice acts as a Cherenkov medium for muons passing the array and using the timing information of detected photons it is possible to reconstruct the muon direction. A search has been performed for nearly vertically upgoing neutrino induced muons with AMANDA-B10 data taken over the three year period 1997-99. No excess above the atmospheric neutrino background expectation was found. Upper limits at the 90 % confidence level has been set on the annihilation rate of neutralinos at the centre of the Earth and on the muon flux induced by neutrinos created by the annihilation products.
Resumo:
Se han eliminado las páginas en blanco