999 resultados para Transferência de calor
Resumo:
A biomassa é uma das fontes de energia renovável com maior potencial em Portugal, sendo a capacidade de produção de pellets de biomassa atualmente instalada superior a 1 milhão de toneladas/ano. Contudo, a maioria desta produção destina-se à exportação ou à utilização em centrais térmicas a biomassa, cujo crescimento tem sido significativo nos últimos anos, prevendo-se que a capacidade instalada em 2020 seja de aproximadamente 250 MW. O mercado português de caldeiras a pellets é bastante diversificado. O estudo que realizamos permitiu concluir que cerca de 90% das caldeiras existentes no mercado português têm potências inferiores a 60 kW, possuindo na sua maioria grelha fixa (81%), com sistema de ignição eléctrica (92%) e alimentação superior do biocombustível sólido (94%). O objetivo do presente trabalho foi o desenvolvimento de um modelo para simulação de uma caldeira a pellets de biomassa, que para além de permitir otimizar o projeto e operação deste tipo de equipamento, permitisse avaliar as inovações tecnológicas nesta área. Para tal recorreu-se o BiomassGasificationFoam, um código recentemente publicado, e escrito para utilização com o OpenFOAM, uma ferramenta computacional de acesso livre, que permite a simulação dos processos de pirólise, gasificação e combustão de biomassa. Este código, que foi inicialmente desenvolvido para descrever o processo de gasificação na análise termogravimétrica de biomassa, foi por nós adaptado para considerar as reações de combustão em fase gasosa dos gases libertados durante a pirólise da biomassa (recorrendo para tal ao solver reactingFoam), e ter a possibilidade de realizar a ignição da biomassa, o que foi conseguido através de uma adaptação do código de ignição do XiFoam. O esquema de ignição da biomassa não se revelou adequado, pois verificou-se que a combustão parava sempre que a ignição era inativada, independentemente do tempo que ela estivesse ativa. Como alternativa, usaram-se outros dois esquemas para a combustão da biomassa: uma corrente de ar quente, e uma resistência de aquecimento. Ambos os esquemas funcionaram, mas nunca foi possível fazer com que a combustão fosse autossustentável. A análise dos resultados obtidos permitiu concluir que a extensão das reações de pirólise e de gasificação, que são ambas endotérmicas, é muito pequena, pelo que a quantidade de gases libertados é igualmente muito pequena, não sendo suficiente para libertar a energia necessária à combustão completa da biomassa de uma maneira sustentável. Para tentar ultrapassar esta dificuldade foram testadas várias alternativas, , que incluíram o uso de diferentes composições de biomassa, diferentes cinéticas, calores de reação, parâmetros de transferência de calor, velocidades do ar de alimentação, esquemas de resolução numérica do sistema de equações diferenciais, e diferentes parâmetros dos esquemas de resolução utilizados. Todas estas tentativas se revelaram infrutíferas. Este estudo permitiu concluir que o solver BiomassGasificationFoam, que foi desenvolvido para descrever o processo de gasificação de biomassa em meio inerte, e em que a biomassa é aquecida através de calor fornecido pelas paredes do reator, aparentemente não é adequado à descrição do processo de combustão da biomassa, em que a combustão deve ser autossustentável, e em que as reações de combustão em fase gasosa são importantes. Assim, é necessário um estudo mais aprofundado que permita adaptar este código à simulação do processo de combustão de sólidos porosos em leito fixo.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil
Resumo:
Em 2006, a IEA (Agência Internacional de Energia), publicou alguns estudos de consumos mundiais de energia. Naquela altura, apontava na fabricação de produtos, um consumo mundial de energia elétrica, de origem fóssil de cerca 86,16 EJ/ano (86,16×018 J) e um consumo de energia nos sistemas de vapor de 32,75 EJ/ano. Evidenciou também nesses estudos que o potencial de poupança de energia nos sistemas de vapor era de 3,27 EJ/ano. Ou seja, quase tanto como a energia consumida nos sistemas de vapor da U.E. Não se encontraram números relativamente a Portugal, mas comparativamente com outros Países publicitados com alguma similaridade, o consumo de energia em vapor rondará 0,2 EJ/ano e por conseguinte um potencial de poupança de cerca 0,02 EJ/ano, ou 5,6 × 106 MWh/ano ou uma potência de 646 MW, mais do que a potência de cinco barragens Crestuma/Lever! Trata-se efetivamente de muita energia; interessa por isso perceber o onde e o porquê deste desperdício. De um modo muito modesto, pretende-se com este trabalho dar algum contributo neste sentido. Procurou-se evidenciar as possibilidades reais de os utilizadores de vapor de água na indústria reduzirem os consumos de energia associados à sua produção. Não estão em causa as diferentes formas de energia para a geração de vapor, sejam de origem fóssil ou renovável; interessou neste trabalho estudar o modo de como é manuseado o vapor na sua função de transporte de energia térmica, e de como este poderá ser melhorado na sua eficiência de cedência de calor, idealmente com menor consumo de energia. Com efeito, de que servirá se se optou por substituir o tipo de queima para uma mais sustentável se a jusante se continuarem a verificarem desperdícios, descarga exagerada nas purgas das caldeiras com perda de calor associada, emissões permanentes de vapor para a atmosfera em tanques de condensado, perdas por válvulas nos vedantes, purgadores avariados abertos, pressão de vapor exageradamente alta atendendo às temperaturas necessárias, “layouts” do sistema de distribuição mal desenhados, inexistência de registos de produção e consumos de vapor, etc. A base de organização deste estudo foi o ciclo de vapor: produção, distribuição, consumo e recuperação de condensado. Pareceu importante incluir também o tratamento de água, atendendo às implicações na transferência de calor das superfícies com incrustações. Na produção de vapor, verifica-se que os maiores problemas de perda de energia têm a ver com a falta de controlo, no excesso de ar e purgas das caldeiras em exagero. Na distribuição de vapor aborda-se o dimensionamento das tubagens, necessidade de purgas a v montante das válvulas de controlo, a redução de pressão com válvulas redutoras tradicionais; será de destacar a experiência americana no uso de micro turbinas para a redução de pressão com produção simultânea de eletricidade. Em Portugal não se conhecem instalações com esta opção. Fabricantes da República Checa e Áustria, têm tido sucesso em algumas dezenas de instalações de redução de pressão em diversos países europeus (UK, Alemanha, R. Checa, França, etc.). Para determinação de consumos de vapor, para projeto ou mesmo para estimativa em máquinas existentes, disponibiliza-se uma série de equações para os casos mais comuns. Dá-se especial relevo ao problema que se verifica numa grande percentagem de permutadores de calor, que é a estagnação de condensado - “stalled conditions”. Tenta-se também evidenciar as vantagens da recuperação de vapor de flash (infelizmente de pouca tradição em Portugal), e a aplicação de termocompressores. Finalmente aborda-se o benchmarking e monitorização, quer dos custos de vapor quer dos consumos específicos dos produtos. Esta abordagem é algo ligeira, por manifesta falta de estudos publicados. Como trabalhos práticos, foram efetuados levantamentos a instalações de vapor em diversos sectores de atividades; 1. ISEP - Laboratório de Química. Porto, 2. Prio Energy - Fábrica de Biocombustíveis. Porto de Aveiro. 3. Inapal Plásticos. Componentes de Automóvel. Leça do Balio, 4. Malhas Sonix. Tinturaria Têxtil. Barcelos, 5. Uma instalação de cartão canelado e uma instalação de alimentos derivados de soja. Também se inclui um estudo comparativo de custos de vapor usado nos hospitais: quando produzido por geradores de vapor com queima de combustível e quando é produzido por pequenos geradores elétricos. Os resultados estão resumidos em tabelas e conclui-se que se o potencial de poupança se aproxima do referido no início deste trabalho.
Resumo:
Dissertação para obtenção do Grau de Mestre em Energias Renováveis – Conversão Elétrica e Utilização Sustentável
Resumo:
A crescente atenção revelada pelas sociedades nos últimos anos, no que respeita à sustentabilidade energética do planeta, tornou-se o principal impulsionador para o desenvolvimento de formas de exploração de energia que contribuem para a redução dos gases com efeito de estufa. A energia geotérmica de baixa entalpia (Shallow Geothermal Energy–SGE) é um dos tipos de energia verde utilizados para aquecimento e arrefecimento de edifícios. Nas últimas décadas, tem vindo a demonstrar uma elevada eficácia energética e aplicabilidade em diversos países em todo o mundo. Aos sistemas convencionais de exploração abertos e fechados, seguiram-se os sistemas com estruturas de fundações termoactivas. A Suíça e Áustria foram os países pioneiros onde se iniciou a exploração utilizando este tipo de estruturas, primeiro com recurso a lajes de fundo e depois, em 1984, através de estacas. A utilização generalizada de fundações de forma bi-funcional poderá resultar numa compensação sustentável dos seus custos de implementação. No entanto, é necessário conhecer de forma sólida o comportamento geotécnico dos solos face à imposição das diferentes acções térmicas provocadas pelos Sistemas Geotérmicos de Baixa Entalpia. A eficácia dos Ground Energy Systems (GES) está directamente associada à capacidade que os solos apresentam para fornecer ou dissipar calor. O desempenho dos GES e a sua eficiência está ainda por avaliar relativamente às condições existentes em Portugal. As propriedades térmicas dos solos são um desses aspectos, sendo da maior relevância na avaliação do seu desempenho. Nesta dissertação são abordados os diferentes mecanismos de transferência de calor nos solos bem como propriedades térmicas necessárias para a sua caracterização. Apresenta-se também um caso prático, para o qual foi realizada caracterização térmica e posterior modelação numérica de uma estrutura termoactiva, determinando-se os campos de temperaturas máximos e mínimos e os fluxos térmicos provocados pelo seu funcionamento.
Resumo:
Este trabalho consistiu no estudo técnico-económico (dimensionamento) de uma central térmica solar de torre norte, com back-up a biomassa (pellets) para produção de energia elétrica. A partir da plataforma PVGIS obteve-se a irradiação normal direta, DNI, da região do Alentejo, Portugal, segundo critérios descritos na secção 3.1. O valor anual obtido foi de 2319 !"ℎ/%&, valor este que foi convertido em energia elétrica, obtendo-se, assim, um montante de 105.761.800 kWh por ano, em 25 anos. Estas importâncias foram obtidas através dos equipamentos que constituem a central, entre eles o campo solar (composto por 2067 helióstatos com área total de 188097 %&), a torre (convertendo a concentração da DNI para energia térmica ao fluído de transferência de calor, HTF), o bloco de potência (composta por permutador de calor, turbina, gerador elétrico e outros) e com ajuda de uma caldeira a biomassa (pellets) que consome cerca de 24.001,23 toneladas de pellets por ano. O estudo económico foi realizado num modelo executável no Excel, calculando, assim, o custo total do sistema, 138.515.886,87 €. A partir deste valor calcularam-se os indicadores económicos (Valor Atualizado Líquido, VAL=-12.282540,28 €) com uma tarifa bonificada de 0,22114 €/kWh, que indica que o sistema termo solar com back-up a biomassa (pellets) não é viável economicamente (e o mesmo acontece com o sistema termo solar sem a biomassa). O dimensionamento técnico do sistema CSP de torre é feito a partir de um modelo matemático executado em Excel e MatLab e pelo software System Advisor Model, SAM e o da caldeira a pellets é concretizado também no Excel. Os resultados do modelo matemático foram comparados com os valores obtidos no SAM para o mês típico de julho comprovando, assim, as fórmulas e conceitos contidos no estado da arte. Realizou-se, também, uma comparação dos valores anuais do sistema obtidos no SAM com os valores reais da Gemasolar (em Espanha), demonstrando então a veracidade dos valores obtidos no dimensionamento feito para Portugal.
Resumo:
Uma vez que o gás natural liquefeito (GNL) é transportado a uma temperatura criogénica de -162 °C e como os gasodutos recebem o gás natural (GN) à temperatura ambiente, existe neste sistema exergia que pode ser usada na produção de energia elétrica. A presente dissertação consiste na proposta, avaliação e comparação termodinâmica de diferentes ciclos para produção de energia elétrica, através do aproveitamento da exergia do GNL, aquando da sua transformação em GN, para introdução nos gasodutos. Neste trabalho, considerou-se como caso de estudo o terminal de GNL de Sines, em Portugal, que atualmente não tem implementada nenhuma solução para o aproveitamento da exergia disponível. Considerando os critérios de projeto, definidos de acordo com as características do terminal de Sines e, usando água do mar como fonte de calor, simularam-se e compararam-se os seguintes tipos de ciclos: o ciclo existente no terminal (CE), sem produção de energia; o ciclo de expansão direta do GN (CED); os ciclos tipo Rankine (CTR); os ciclos tipo Rankine com expansão direta (CTR+ED); e os ciclos tipo Rankine com apoio de energia solar (CTRS). Consideraram-se sete fluidos de trabalho (FT) diferentes: propano, etano, etileno, dióxido de carbono, R134a, R143a e propileno. As potências líquidas máximas obtidas para cada ciclo demonstram que: com o CE gastam-se cerca de 1182 kW para fazer o processamento de GNL; com o CED é possível gastar apenas 349 kW; com os CTR é possível obter uma potência líquida positiva ao processar o GNL, produzindo até 2120 kW (usando propileno como FT); com os CTR+ED é possível produzir 2174 kW (também usando propileno com FT); e com os CTRS é possível produzir até 3440 kW (valor médio anual) (usando etano como FT). Fez-se a otimização multi-objetivo dos ciclos tendo-se considerado alguns aspetos económicos. Além da maximização da potência líquida, para os CED, CTR e CTR+ED minimizou-se a área de transferência de calor total dos permutadores de calor e para os CTRS minimizou-se a área de coletores solares instalada.
Resumo:
Dissertação de mestrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
RESUMO O conhecimento do comportamento reológico de sucos de frutas tropicais é muito importante para a indústria de alimentos, uma vez que permite estabelecer condições de processamento e projetos de equipamentos relacionados à transferência de calor e massa bem como as operações unitárias envolvidas em todo o processo de obtenção. Este trabalho estudou o comportamento reológico do suco de buriti (Mauritia flexuosa). Os dados reológicos foram obtidos através de um viscosímetro rotacional com geometria de cilindros concêntricos (Brookfield, modelo DV II+). Os ensaios foram realizados em seis diferentes temperaturas (10; 20; 30; 40; 50 e 60ºC), e os resultados experimentais foram ajustados pelos modelos Lei da Potência e Mizrahi-Berk. O suco de buriti apresentou comportamento não newtoniano nas seis temperaturas. Na quantificação da viscosidade aparente (?ap), os parâmetros reológicos (K e n) foram obtidos através do ajuste do modelo Lei da Potência, que se mostrou bastante adequado na predição do comportamento reológico do suco, com coeficientes de determinação r2 > 0,99 para cinco das seis temperaturas investigadas. O produto apresentou comportamento pseudoplástico (n<1), e o índice de comportamento de fluxo decresceu com o aumento da temperatura. O efeito da temperatura sobre a viscosidade aparente foi descrita pela equação de Arrhenius e discutida em termos de energia de ativação (Ea), e os valores da Ea variaram de 2,84 a 3,0 kcal/gmol para a faixa da taxa de deformação utilizada.
Resumo:
O resfriamento e/ou congelamento de produtos hortícolas, depois da colheita, é realizado com o objetivo de retirar o calor desses produtos, permitindo-lhes, em função disso, um tempo maior de conservação. Portanto, o conhecimento das propriedades físicas que envolvem transferência de calor do figo "Roxo de Valinhos" é útil para o cálculo de projetos e a análise de sistemas de engenharia de alimentos em geral, assim como para o emprego em equações de modelos matemáticos termodinâmicos. Neste trabalho, foram determinadas, experimentalmente, a condutividade e a difusividade térmica do figo inteiro no estádio rami e, a partir desses valores, foi determinado o calor específico. Foi utilizado o método transiente da Fonte Linear de Calor. Foi introduzida nas frutas uma sonda que contém resistência elétrica e termopares. Para manter constante a temperatura da fruta, montou-se um sistema de resfriamento a água. Encontrou-se que o figo rami apresentou um valor de condutividade térmica de 0,52 W m-1 °C, difusividade térmica de 1,56 x 10-7 m² s-1, massa específica do figo de 815,6 kg m-3 e calor específico de 4,07 kJ kg-1 °C.
Resumo:
Este trabalho abordou o resfriamento rápido com ar forçado de morango via simulação numérica. Para tanto, foi empregado o modelo matemático que descreve o processo de transferência de calor, com base na lei de Fourier, escrito em coordenadas esféricas e simplificado para descrever o processo unidimensional. A resolução da equação expressa pelo modelo matemático deu-se por meio da implementação de um algoritmo, fundamentado no esquema explícito do método numérico das diferenças finitas, executado no ambiente de computação científica MATLAB 6.1. A validação do modelo matemático foi realizada a partir da comparação de dados teóricos com dados obtidos num experimento, no qual morangos foram resfriados com ar forçado. Os resultados mostraram que esse tipo de investigação para a determinação do coeficiente de transferência de calor por convecção é promissora como ferramenta no suporte à decisão do uso ou desenvolvimento de equipamentos na área de resfriamento rápido de frutos esféricos com ar forçado.
Resumo:
Apresenta-se neste trabalho, estudo detalhado sobre a modelagem de um condicionador de ar com controle acurado de temperatura e umidade relativa. Desenvolveu-se um programa de computador que permite predizer o comportamento do sistema sob diferentes condições psicrométricas e de vazão do ar de entrada. O modelo global físico-matemático inclui equações de balanço de massa e de energia para três diferentes volumes de controle que compõem o condicionador. Modelaram-se os processos de mistura, evaporação (ou condensação) simultânea de uma superfície d'água e de uma gota e o aquecimento de corrente de ar, separadamente. Propõem-se expressões semi-empíricas simples para os coeficientes de transferência de calor e massa inerentes ao processo de evaporação sobre uma superfície d'água e um modelo simplificado para o sistema de spray. Construiu-se um condicionador de ar no qual foram feitos testes experimentais para o ajuste das constantes que aparecem nas expressões para os coeficientes de transferência. Os dados obtidos validaram o modelo global, com precisão aceitável para projetos de engenharia.