902 resultados para Transcranial magnetic stimulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using transcranial magnetic stimulation and skin conductance responses, we sought to clarify if, and to what extent, emotional experiences of different valences and intensity activate the hand-motor system and the associated corticospinal tract. For that purpose, we applied a newly developed method to evoke strong emotional experiences by the simultaneous presentation of musical and pictorial stimuli of congruent emotional valence. We uncovered enhanced motor-evoked potentials, irrespective of valence, during the simultaneous presentation of emotional music and picture stimuli (Combined conditions) compared with the single presentation of the two modalities (Picture/Music conditions). In contrast, vegetative arousal was enhanced during both the Combined and Music conditions, compared with the Picture conditions, again irrespective of emotional valence. These findings strongly indicate that arousal is a necessary, but not sufficient, prerequisite for triggering the motor system of the brain. We offer a potential explanation for this discrepant, but intriguing, finding in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quick identification of potentially threatening events is a crucial cognitive capacity to survive in a changing environment. Previous functional MRI data revealed the right dorsolateral prefrontal cortex and the region of the left intraparietal sulcus (IPS) to be involved in the perception of emotionally negative stimuli. For assessing chronometric aspects of emotion processing, we applied transcranial magnetic stimulation above these areas at different times after negative and neutral picture presentation. An interference with emotion processing was found with transcranial magnetic stimulation above the dorsolateral prefrontal cortex 200-300 ms and above the left intraparietal sulcus 240/260 ms after negative stimuli. The data suggest a parallel and conjoint involvement of prefrontal and parietal areas for the identification of emotionally negative stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decisions require careful weighing of the risks and benefits associated with a choice. Some people need to be offered large rewards to balance even minimal risks, whereas others take great risks in the hope for an only minimal benefit. We show here that risk-taking is a modifiable behavior that depends on right hemisphere prefrontal activity. We used low-frequency, repetitive transcranial magnetic stimulation to transiently disrupt left or right dorsolateral prefrontal cortex (DLPFC) function before applying a well known gambling paradigm that provides a measure of decision-making under risk. Individuals displayed significantly riskier decision-making after disruption of the right, but not the left, DLPFC. Our findings suggest that the right DLPFC plays a crucial role in the suppression of superficially seductive options. This confirms the asymmetric role of the prefrontal cortex in decision-making and reveals that this fundamental human capacity can be manipulated in normal subjects through cortical stimulation. The ability to modify risk-taking behavior may be translated into therapeutic interventions for disorders such as drug abuse or pathological gambling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When subjects are required to generate a random sequence of numbers they typically produce too many forward and backward 'counts' (e.g. 5-6, 4-3). This counting bias is interpreted as the consequence of an interference by overlearned tendencies to arrange numbers according to their natural order. Inhibition of such well-learned routines is known to rely on frontal lobe functioning. We examined differential effects of slow (1 Hz) and fast (10 Hz) repetitive transcranial magnetic stimulation (rTMS) over the left or right dorsolateral prefrontal cortex (DLPFC) on random number generation (RNG) performance. Eighteen healthy men performed an RNG task. Those subjects stimulated over the left DLPFC showed a frequency-dependent rTMS effect: counting bias was significantly reduced after the 1 Hz stimulation compared with baseline, but significantly exaggerated after the 10 Hz stimulation compared with 1 Hz stimulation. In contrast, the sequences of the subjects stimulated over the right DLPFC showed the well-known excess of counting in all conditions (i.e. baseline, 1 Hz and 10 Hz). These findings confirm the functional importance of specifically the left DLPFC in sequential response production and show, for the first time, that rTMS affects cognitive processing in a frequency-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motion-induced blindness (MIB) is a phenomenon, perhaps related to perceptual rivalry, where stationary targets disappear and reappear in a cyclic mode when viewed against a background (mask) of coherent, apparent 3-D motion. Since MIB has recently been shown to share similar temporal properties with binocular rivalry, we probed the appearance-disappearance cycle of MIB using unilateral, single-pulse transcranial magnetic stimulation (TMS)-a manipulation that has previously been shown to influence binocular rivalry. Effects were seen for both hemispheres when the timing of TMS was determined prospectively on the basis of a given subject's appearance-disappearance cycle, so that it occurred on average around 300 ms before the time of perceptual switch. Magnetic stimulation of either hemisphere shortened the time to switch from appearance to disappearance and vice versa. However, TMS of left posterior parietal cortex more selectively shortened the disappearance time of the targets if delivered in phase with the disappearance cycle, but lengthened it if TMS was delivered in the appearance phase after the perceptual switch. Opposite effects were seen in the right hemisphere, although less marked than the left-hemisphere effects. As well as sharing temporal characteristics with binocular rivalry, MIB therefore seems to share a similar underlying mechanism of interhemispheric modulation. Interhemispheric switching may thus provide a common temporal framework for uniting the diverse, multilevel phenomena of perceptual rivalry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 'attentional blink' (AB) reflects a limitation in the ability to identify multiple items in a stream of rapidly presented information. Repetitive transcranial magnetic stimulation (rTMS), applied to a site over the right posterior parietal cortex, reduced the magnitude of the AB to visual stimuli, whilst no effect of rTMS was found when stimulation took place at a control site. The data confirm that the posterior parietal cortex may play a critical role in temporal as well as spatial aspects of visual attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sport and exercise psychologists provide some interventions for clients based on limited direct evidence and partial understanding of the mechanisms that underpin their efficacy. The authors review a recent technique, transcranial magnetic stimulation (TMS), which offers a tested procedure for investigating cortical activity during observation and imagery processes. They provide a detailed description of the TMS protocol and highlight some of the key studies that inform sport and exercise psychology research. Finally, the authors offer some thoughts on the direct application to practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies using transcranial magnetic stimulation have demonstrated that action observation can modulate the activity of the corticospinal system. This has been attributed to the activity of an 'action observation network', whereby premotor cortex activity influences corticospinal excitability. Neuroimaging studies have demonstrated that the context in which participants observe actions (i.e. whether they simply attend to an action, or observe it with the intention to imitate) modulates action observation network activity. The study presented here examined whether the context in which actions were observed revealed similar modulatory effects on corticospinal excitability. Eight human participants observed a baseline stimulus (a fixation cross), observed actions in order to attend to them, or observed the same actions with the intention to imitate them. Whereas motor evoked potentials elicited from the first dorsal interosseus muscle of the hand were facilitated by attending to actions, observing the same actions in an imitative capacity led to no facilitation effect. Furthermore, no motor facilitation effects occurred in a control muscle. Electromyographic data collected when participants physically imitated the observed actions revealed that the activity of the first dorsal interosseus muscle increased significantly during action execution compared with rest. These data suggest that an inhibitory mechanism acts on the corticospinal system to prevent the immediate overt imitation of observed actions. These data provide novel insight into the properties of the human action observation network, demonstrating for the first time that observing actions with the intention to imitate them can modulate the effects of action observation on corticospinal excitability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcranial magnetic stimulation (TMS) studies indicate that the observation of other people's actions influences the excitability of the observer's motor system. Motor evoked potential (MEP) amplitudes typically increase in muscles which would be active during the execution of the observed action. This 'motor resonance' effect is thought to result from activity in mirror neuron regions, which enhance the excitability of the primary motor cortex (M1) via cortico-cortical pathways. The importance of TMS intensity has not yet been recognised in this area of research. Low-intensity TMS predominately activates corticospinal neurons indirectly, whereas high-intensity TMS can directly activate corticospinal axons. This indicates that motor resonance effects should be more prominent when using low-intensity TMS. A related issue is that TMS is typically applied over a single optimal scalp position (OSP) to simultaneously elicit MEPs from several muscles. Whether this confounds results, due to differences in the manner that TMS activates spatially separate cortical representations, has not yet been explored. In the current study, MEP amplitudes, resulting from single-pulse TMS applied over M1, were recorded from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles during the observation of simple finger abductions. We tested if the TMS intensity (110% vs. 130% resting motor threshold) or stimulating position (FDI-OSP vs. ADM-OSP) influenced the magnitude of the motor resonance effects. Results showed that the MEP facilitation recorded in the FDI muscle during the observation of index-finger abductions was only detected using low-intensity TMS. In contrast, changes in the OSP had a negligible effect on the presence of motor resonance effects in either the FDI or ADM muscles. These findings support the hypothesis that MN activity enhances M1 excitability via cortico-cortical pathways and highlight a methodological framework by which the neural underpinnings of action observation can be further explored. © 2013 Loporto et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated inter-individual variability in optimal current direction for biphasic transcranial magnetic stimulation (TMS) of the motor cortex. Motor threshold for first dorsal interosseus was detected visually at eight coil orientations in 45° increments. Each participant (n = 13) completed two experimental sessions. One participant with low test–retest correlation (Pearson's r < 0.5) was excluded. In four subjects, visual detection of motor threshold was compared to EMG detection; motor thresholds were very similar and highly correlated (0.94–0.99). Similar with previous studies, stimulation in the majority of participants was most effective when the first current pulse flowed towards postero-lateral in the brain. However, in four participants, the optimal coil orientation deviated from this pattern. A principal component analysis using all eight orientations suggests that in our sample the optimal orientation of current direction was normally distributed around the postero-lateral orientation with a range of 63° (S.D. = 13.70°). Whenever the intensity of stimulation at the target site is calculated as a percentage from the motor threshold, in order to minimize intensity and side-effects it may be worthwhile to check whether rotating the coil 45° from the traditional posterior–lateral orientation decreases motor threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this experiment was to assess the test-retest reliability of input-output parameters of the cortico-spinal pathway derived from transcranial magnetic (TMS) and electrical (TES) stimulation at rest and during muscle contraction. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of eight individuals on three separate days. The intensity of TMS at rest was varied from 5% below threshold to the maximal output of the stimulator. During trials in which the muscle was active, TMS and TES intensities were selected that elicited MEPs of between 150 and 300 X at rest. MEPs were evoked while the participants exerted torques up to 50% of their maximum capacity. The relationship between MEP size and stimulus intensity at rest was sigmoidal (R-2 = 0.97). Intra-class correlation coefficients (ICC) ranged between 0.47 and 0.81 for the parameters of the sigmoid function. For the active trials, the slope and intercept of regression equations of MEP size on level of background contraction were obtained more reliably for TES (ICC = 0.63 and 0.78, respectively) than for TMS (ICC = 0.50 and 0.53, respectively), These results suggest that input-output parameters of the cortico-spinal pathway may be reliably obtained via transcranial stimulation during longitudinal investigations of cortico-spinal plasticity. (C) 2001 Elsevier Science B.V. All rights reserved.