977 resultados para Transcatheter aortic valve replacement
Resumo:
Trans-apical aortic valve replacement (AVR) is a new and rapidly growing therapy. However, there are only few training opportunities. The objective of our work is to build an appropriate artificial model of the heart that can replace the use of animals for surgical training in trans-apical AVR procedures. To reduce the necessity for fluoroscopy, we pursued the goal of building a translucent model of the heart that has nature-like dimensions. A simplified 3D model of a human heart with its aortic root was created in silico using the SolidWorks Computer-Aided Design (CAD) program. This heart model was printed using a rapid prototyping system developed by the Fab@Home project and dip-coated two times with dispersion silicone. The translucency of the heart model allows the perception of the deployment area of the valved-stent without using heavy imaging support. The final model was then placed in a human manikin for surgical training on trans-apical AVR procedure. Trans-apical AVR with all the necessary steps (puncture, wiring, catheterization, ballooning etc.) can be realized repeatedly in this setting.
Resumo:
BACKGROUND Very few data exist on the clinical impact of permanent pacemaker implantation (PPI) after transcatheter aortic valve implantation. The objective of this study was to assess the impact of PPI after transcatheter aortic valve implantation on late outcomes in a large cohort of patients. METHODS AND RESULTS A total of 1556 consecutive patients without prior PPI undergoing transcatheter aortic valve implantation were included. Of them, 239 patients (15.4%) required a PPI within the first 30 days after transcatheter aortic valve implantation. At a mean follow-up of 22±17 months, no association was observed between the need for 30-day PPI and all-cause mortality (hazard ratio, 0.98; 95% confidence interval, 0.74-1.30; P=0.871), cardiovascular mortality (hazard ratio, 0.81; 95% confidence interval, 0.56-1.17; P=0.270), and all-cause mortality or rehospitalization for heart failure (hazard ratio, 1.00; 95% confidence interval, 0.77-1.30; P=0.980). A lower rate of unexpected (sudden or unknown) death was observed in patients with PPI (hazard ratio, 0.31; 95% confidence interval, 0.11-0.85; P=0.023). Patients with new PPI showed a poorer evolution of left ventricular ejection fraction over time (P=0.017), and new PPI was an independent predictor of left ventricular ejection fraction decrease at the 6- to 12-month follow-up (estimated coefficient, -2.26; 95% confidence interval, -4.07 to -0.44; P=0.013; R(2)=0.121). CONCLUSIONS The need for PPI was a frequent complication of transcatheter aortic valve implantation, but it was not associated with any increase in overall or cardiovascular death or rehospitalization for heart failure after a mean follow-up of ≈2 years. Indeed, 30-day PPI was a protective factor for the occurrence of unexpected (sudden or unknown) death. However, new PPI did have a negative effect on left ventricular function over time.
Resumo:
OBJECTIVE To evaluate immediate transcatheter aortic valve implantation (TAVI) results and medium-term follow-up in very elderly patients with severe and symptomatic aortic stenosis (AS). METHODS This multicenter, observational and prospective study was carried out in three hospitals. We included consecutive very elderly (> 85 years) patients with severe AS treated by TAVI. The primary endpoint was to evaluate death rates from any cause at two years. RESULTS The study included 160 consecutive patients with a mean age of 87 ± 2.1 years (range from 85 to 94 years) and a mean logistic EuroSCORE of 18.8% ± 11.2% with 57 (35.6%) patients scoring ≥ 20%. Procedural success rate was 97.5%, with 25 (15.6%) patients experiencing acute complications with major bleeding (the most frequent). Global mortality rate during hospitalization was 8.8% (n = 14) and 30-day mortality rate was 10% (n = 16). Median follow up period was 252.24 ± 232.17 days. During the follow-up period, 28 (17.5%) patients died (17 of them due to cardiac causes). The estimated two year overall and cardiac survival rates using the Kaplan-Meier method were 71% and 86.4%, respectively. Cox proportional hazard regression showed that the variable EuroSCORE ≥ 20 was the unique variable associated with overall mortality. CONCLUSIONS TAVI is safe and effective in a selected population of very elderly patients. Our findings support the adoption of this new procedure in this complex group of patients.
Resumo:
There is an ever-growing trend towards less-invasive procedures in all fields of medicine. We designed an animal study to prove the concept that trans-apical aortic valve replacement from an incision within the umbilicus through a single channel for instruments is feasible, which would be a major leap towards no-scar cardiac surgery. In three adult pigs, after creating a single 3-cm incision at a place where the human umbilicus would be, we introduced a 30F sheath through a tunnel created by an endoscopic vein-harvesting device up to the cardiac apex, through it and up to the left ventricle simulating the approach for trans-apical aortic valve replacement. We used a standard Amplatz nitinol occluder to seal the defect in ventricle wall later. The animals were followed up for 1h. Blood loss was minimal, and no tamponade occurred in any of the animals. In addition, we performed a test with water column static pressure to evaluate the impact of preclotting on the sealing properties of the occluders: 1 min flow-through was 2860+/-176 ml for the standard occluders and 348+/-56 ml for preclotted occluders (p<0.001).
Resumo:
ABSTRACT: Transapical aortic valve replacement is an established technique performed in high-risk patients with symptomatic aortic valve stenosis and vascular disease contraindicating trans-vascular and trans-aortic procedures. The presence of a left ventricular apical diverticulum is a rare event and the treatment depends on dimensions and estimated risk of embolisation, rupture, or onset of ventricular arrhythmias. The diagnosis is based on standard cardiac imaging and symptoms are very rare. In this case report we illustrate our experience with a 81 years old female patient suffering from symptomatic aortic valve stenosis, respiratory disease, chronic renal failure and severe peripheral vascular disease (logistic euroscore: 42%), who successfully underwent a transapical 23 mm balloon-expandable stent-valve implantation through an apical diverticulum of the left ventricle. Intra-luminal thrombi were absent and during the same procedure were able to treat the valve disease and to successfully exclude the apical diverticulum without complications and through a mini thoracotomy. To the best of our knowledge, this is the first time that a transapical procedure is successfully performed through an apical diverticulum.
Transcatheter aortic valve implantation (TAVI): state of the art techniques and future perspectives.
Resumo:
Transcatheter aortic valve therapies are the newest established techniques for the treatment of high risk patients affected by severe symptomatic aortic valve stenosis. The transapical approach requires a left anterolateral mini-thoracotomy, whereas the transfemoral method requires an adequate peripheral vascular access and can be performed fully percutaneously. Alternatively, the trans-subclavian access has been recently proposed as a third promising approach. Depending on the technique, the fine stent-valve positioning can be performed with or without contrast injections. The transapical echo-guided stent-valve implantation without angiography (the Lausanne technique) relies entirely on transoesophageal echocardiogramme imaging for the fine stent-valve positioning and it has been proved that this technique prevents the onset of postoperative contrast-related acute kidney failure. Recent published reports have shown good hospital outcomes and short-term results after transcatheter aortic valve implantation, but there are no proven advantages in using the transfemoral or the transapical technique. In particular, the transapical series have a higher mean logistic Euroscore of 27-35%, a procedural success rate above 95% and a mean 30-day mortality between 7.5 and 17.5%, whereas the transfemoral results show a lower logistic Euroscore of 23-25.5%, a procedural success rate above 90% and a 30-day mortality of 7-10.8%. Nevertheless, further clinical trials and long-term results are mandatory to confirm this positive trend. Future perspectives in transcatheter aortic valve therapies would be the development of intravascular devices for the ablation of the diseased valve leaflets and the launch of new stent-valves with improved haemodynamic, different sizes and smaller delivery systems.
Resumo:
IMPORTANCE: Owing to a considerable shift toward bioprosthesis implantation rather than mechanical valves, it is expected that patients will increasingly present with degenerated bioprostheses in the next few years. Transcatheter aortic valve-in-valve implantation is a less invasive approach for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE: To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING, AND PARTICIPANTS: Correlates for survival were evaluated using a multinational valve-in-valve registry that included 459 patients with degenerated bioprosthetic valves undergoing valve-in-valve implantation between 2007 and May 2013 in 55 centers (mean age, 77.6 [SD, 9.8] years; 56% men; median Society of Thoracic Surgeons mortality prediction score, 9.8% [interquartile range, 7.7%-16%]). Surgical valves were classified as small (≤21 mm; 29.7%), intermediate (>21 and <25 mm; 39.3%), and large (≥25 mm; 31%). Implanted devices included both balloon- and self-expandable valves. MAIN OUTCOMES AND MEASURES: Survival, stroke, and New York Heart Association functional class. RESULTS: Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83.2% (95% CI, 80.8%-84.7%; 62 death events; 228 survivors). Patients in the stenosis group had worse 1-year survival (76.6%; 95% CI, 68.9%-83.1%; 34 deaths; 86 survivors) in comparison with the regurgitation group (91.2%; 95% CI, 85.7%-96.7%; 10 deaths; 76 survivors) and the combined group (83.9%; 95% CI, 76.8%-91%; 18 deaths; 66 survivors) (P = .01). Similarly, patients with small valves had worse 1-year survival (74.8% [95% CI, 66.2%-83.4%]; 27 deaths; 57 survivors) vs with intermediate-sized valves (81.8%; 95% CI, 75.3%-88.3%; 26 deaths; 92 survivors) and with large valves (93.3%; 95% CI, 85.7%-96.7%; 7 deaths; 73 survivors) (P = .001). Factors associated with mortality within 1 year included having small surgical bioprosthesis (≤21 mm; hazard ratio, 2.04; 95% CI, 1.14-3.67; P = .02) and baseline stenosis (vs regurgitation; hazard ratio, 3.07; 95% CI, 1.33-7.08; P = .008). CONCLUSIONS AND RELEVANCE: In this registry of patients who underwent transcatheter valve-in-valve implantation for degenerated bioprosthetic aortic valves, overall 1-year survival was 83.2%. Survival was lower among patients with small bioprostheses and those with predominant surgical valve stenosis.
Resumo:
AIMS: To evaluate short-term clinical outcomes following transcatheter aortic valve implantation (TAVI) using CE-mark approved devices in Switzerland. METHODS AND RESULTS: The Swiss TAVI registry is a national, prospective, multicentre, monitored cohort study evaluating clinical outcomes in consecutive patients undergoing TAVI at cardiovascular centres in Switzerland. From February 2011 to March 2013, a total of 697 patients underwent TAVI for native aortic valve stenosis (98.1%), degenerative aortic bioprosthesis (1.6%) or severe aortic regurgitation (0.3%). Patients were elderly (82.4±6 years), 52% were females, and the majority highly symptomatic (73.1% NYHA III/IV). Patients with severe aortic stenosis (mean gradient 44.8±17 mmHg, aortic valve area 0.7±0.3 cm²) were either deemed inoperable or at high risk for conventional surgery (STS 8.2%±7). The transfemoral access was the most frequently used (79.1%), followed by transapical (18.1%), direct aortic (1.7%) and subclavian access (1.1%). At 30 days, rates of all-cause mortality, cerebrovascular events and myocardial infarction were 4.8%, 3.3% and 0.4%, respectively. The most frequently observed adverse events were access-related complications (11.8%), permanent pacemaker implantation (20.5%) and bleeding complications (16.6%). The Swiss TAVI registry is registered at ClinicalTrials.gov (NCT01368250). CONCLUSIONS: The Swiss TAVI registry is a national cohort study evaluating consecutive TAVI procedures in Switzerland. This first outcome report provides favourable short-term clinical outcomes in unselected TAVI patients.
Resumo:
PURPOSE OF REVIEW: The safety and efficiency of trans catheter aortic valve implantation (TAVI) has been clearly demonstrated. In high-risk patients, the number of procedures is constantly increasing and in western European countries this procedure is employed in more than 30% of isolated aortic valve replacements. The literature, however, focusing on perioperative aortic root (AoR) rupture is rather limited to just a few reports. The aim of this review is to analyze the pathophysiology of AoR rupture during TAVI, stressing the implications of the morphology of the AoR for this devastating complication. RECENT FINDINGS: Currently, perioperative AoR rupture ranges between 0.5 and 1.5% during TAVI, with almost 100% mortality. Recently, valve oversizing and balloon dilatation in a calcified and small AoR were considered as the most important predictive factors for this complication. SUMMARY: The most fragile unit of the AoR is its anchoring substrate to the ostium of the left ventricle. This membranous structure is not involved in the degenerative process leading to aortic valve stenosis. Due to the TAVI and/or balloon dilatation of the calcium stationed on the three leaflets and their attachment, a lesion may result on this structure. And, as a consequence, there is rupture of the AoR.
Resumo:
NlmCategory="UNASSIGNED">Rapid deployment aortic valve replacement (RDAVR) with the use of rapid deployment valve systems represents a smart alternative to the use of standard aortic bioprosthesis for aortic valve replacement. Nevertheless, its use is still debatable in patients with pure aortic valve regurgitation or true bicuspid aortic valve because of the risk of postoperative paravalvular leak. To address this issue, an optimal annulus-valve size match seems to be the ideal surgical strategy. This article describes a new technique developed to stabilize the aortic annulus and prevent paravalvular leak after RDAVR. To confirm the feasibility, this technique was performed in six patients with severe symptomatic aortic stenosis who were scheduled to undergo aortic valve replacement at our center. All patients survived surgery and were discharged from the hospital. There were no new intracardiac conduction system disturbances observed, and a permanent pacemaker implantation was not required in any of the patients. The intraoperative and postoperative echocardiogram confirmed successful positioning of the valve, and no paravalvular leak was observed. In this preliminary experience, RDAVR through a full sternotomy or an upper hemisternotomy approach with the use of aortic annulus stabilization technique was safe, and no leak was observed. Future studies on large series of patients are necessary to confirm the safety and effectiveness of this technique in preventing paravalvular leak in patients with true bicuspid aortic valves or pure aortic regurgitation.
Resumo:
BACKGROUND: New generation transcatheter heart valves (THV) may improve clinical outcomes of transcatheter aortic valve implantation. METHODS AND RESULTS: In a nationwide, prospective, multicenter cohort study (Swiss Transcatheter Aortic Valve Implantation Registry, NCT01368250), outcomes of consecutive transfemoral transcatheter aortic valve implantation patients treated with the Sapien 3 THV (S3) versus the Sapien XT THV (XT) were investigated. An overall of 153 consecutive S3 patients were compared with 445 consecutive XT patients. Postprocedural mean transprosthetic gradient (6.5±3.0 versus 7.8±6.3 mm Hg, P=0.17) did not differ between S3 and XT patients, respectively. The rate of more than mild paravalvular regurgitation (1.3% versus 5.3%, P=0.04) and of vascular (5.3% versus 16.9%, P<0.01) complications were significantly lower in S3 patients. A higher rate of new permanent pacemaker implantations was observed in patients receiving the S3 valve (17.0% versus 11.0%, P=0.01). There were no significant differences for disabling stroke (S3 1.3% versus XT 3.1%, P=0.29) and all-cause mortality (S3 3.3% versus XT 4.5%, P=0.27). CONCLUSIONS: The use of the new generation S3 balloon-expandable THV reduced the risk of more than mild paravalvular regurgitation and vascular complications but was associated with an increased permanent pacemaker rate compared with the XT. Transcatheter aortic valve implantation using the newest generation balloon-expandable THV is associated with a low risk of stroke and favorable clinical outcomes. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01368250.
Resumo:
The purpose of the present analysis was to identify predictors of procedural success of percutaneous transcatheter aortic valve implantation (TAVI).
Resumo:
Valvuloplasty of the aortic valve is currently used in selected patients for severe calcified aortic valve disease, but clinical effectiveness is low and complication rate remains high. In this study, the total particle load after valvuloplasty and the embolization risk of calcific debris into the coronary arteries was analyzed in an in vitro model.