979 resultados para Trajectory-based
Resumo:
Loop detectors are widely used on the motorway networks where they provide point speed and traffic volumes. Models have been proposed for temporal and spatial generalization of speed for average travel time estimation. Advancement in technology provides complementary data sources such as Bluetooth MAC Scanner (BMS), detecting the MAC ID of the Bluetooth devices transported by the traveller. Matching the data from two BMS stations provides individual vehicle travel time. Generally, on the motorways loops are closely spaced, whereas BMS are placed few kilometres apart. In this research, we fuse BMSs and loops data to define the trajectories of the Bluetooth vehicles. The trajectories are utilised to estimate the travel time statistics between any two points along the motorway. The proposed model is tested using simulation and validated with real data from Pacific motorway, Brisbane. Comparing the model with the linear interpolation based trajectory provides significant improvements.
Resumo:
Map-matching algorithms that utilise road segment connectivity along with other data (i.e.position, speed and heading) in the process of map-matching are normally suitable for high frequency (1 Hz or higher) positioning data from GPS. While applying such map-matching algorithms to low frequency data (such as data from a fleet of private cars, buses or light duty vehicles or smartphones), the performance of these algorithms reduces to in the region of 70% in terms of correct link identification, especially in urban and sub-urban road networks. This level of performance may be insufficient for some real-time Intelligent Transport System (ITS) applications and services such as estimating link travel time and speed from low frequency GPS data. Therefore, this paper develops a new weight-based shortest path and vehicle trajectory aided map-matching (stMM) algorithm that enhances the map-matching of low frequency positioning data on a road map. The well-known A* search algorithm is employed to derive the shortest path between two points while taking into account both link connectivity and turn restrictions at junctions. In the developed stMM algorithm, two additional weights related to the shortest path and vehicle trajectory are considered: one shortest path-based weight is related to the distance along the shortest path and the distance along the vehicle trajectory, while the other is associated with the heading difference of the vehicle trajectory. The developed stMM algorithm is tested using a series of real-world datasets of varying frequencies (i.e. 1 s, 5 s, 30 s, 60 s sampling intervals). A high-accuracy integrated navigation system (a high-grade inertial navigation system and a carrier-phase GPS receiver) is used to measure the accuracy of the developed algorithm. The results suggest that the algorithm identifies 98.9% of the links correctly for every 30 s GPS data. Omitting the information from the shortest path and vehicle trajectory, the accuracy of the algorithm reduces to about 73% in terms of correct link identification. The algorithm can process on average 50 positioning fixes per second making it suitable for real-time ITS applications and services.
Resumo:
Title The trajectory of minor stroke recovery for men and their female spousal caregivers: literature review Aim This paper is a report of a narrative review to examine the current state of knowledge regarding the impact of minor stroke on male patients and their female spousal caregivers’ recovery trajectory and quality of life. Background Minor stroke survivors are often discharged early in the recovery process. The perception of the healthcare community that these patients and their female spousal caregivers will experience an uneventful recovery may lead to inadequate preparation for the postdischarge period. Methods A range of databases was searched to identify papers addressing ‘minor stroke’, ‘transitions’, ‘quality of life’, ‘chronic disease’, ‘caregivers’ and ‘spouse caregivers’, including AARP Ageline, AMED, CINAHL, Evidence Based Medicine Reviews, MEDLINE and PsychInfo. Papers published in English from 1990 to December 2006 were included. Thirty-four papers were in the final data set. Results Minor stroke survivors and their female spousal caregivers may experience major challenges in adaptations postdischarge. The trajectory of minor stroke recovery may necessitate a re-evaluation of life plans, rethinking of priorities and integration of resulting disabilities into current and emerging life situations for both stroke survivors and their female spousal caregivers. In many cases these adaptations are compounded by transitions associated with the normal ageing process. Conclusion While there is extensive literature on stroke recovery and the role of caregivers in general, there is little available describing the recovery of minor stroke survivors in relation to the normal ageing process. Further research is needed examining recovery from a transitional perspective, to support nurses and other health professionals discharge planning.
Resumo:
Brain connectivity analyses are increasingly popular for investigating organization. Many connectivity measures including path lengths are generally defined as the number of nodes traversed to connect a node in a graph to the others. Despite its name, path length is purely topological, and does not take into account the physical length of the connections. The distance of the trajectory may also be highly relevant, but is typically overlooked in connectivity analyses. Here we combined genotyping, anatomical MRI and HARDI to understand how our genes influence the cortical connections, using whole-brain tractography. We defined a new measure, based on Dijkstra's algorithm, to compute path lengths for tracts connecting pairs of cortical regions. We compiled these measures into matrices where elements represent the physical distance traveled along tracts. We then analyzed a large cohort of healthy twins and show that our path length measure is reliable, heritable, and influenced even in young adults by the Alzheimer's risk gene, CLU.
Resumo:
We consider the problem of estimating the optimal parameter trajectory over a finite time interval in a parameterized stochastic differential equation (SDE), and propose a simulation-based algorithm for this purpose. Towards this end, we consider a discretization of the SDE over finite time instants and reformulate the problem as one of finding an optimal parameter at each of these instants. A stochastic approximation algorithm based on the smoothed functional technique is adapted to this setting for finding the optimal parameter trajectory. A proof of convergence of the algorithm is presented and results of numerical experiments over two different settings are shown. The algorithm is seen to exhibit good performance. We also present extensions of our framework to the case of finding optimal parameterized feedback policies for controlled SDE and present numerical results in this scenario as well.
Resumo:
In this paper, the trajectory tracking control of an autonomous underwater vehicle (AUVs) in six-degrees-of-freedom (6-DOFs) is addressed. It is assumed that the system parameters are unknown and the vehicle is underactuated. An adaptive controller is proposed, based on Lyapunov׳s direct method and the back-stepping technique, which interestingly guarantees robustness against parameter uncertainties. The desired trajectory can be any sufficiently smooth bounded curve parameterized by time even if consist of straight line. In contrast with the majority of research in this field, the likelihood of actuators׳ saturation is considered and another adaptive controller is designed to overcome this problem, in which control signals are bounded using saturation functions. The nonlinear adaptive control scheme yields asymptotic convergence of the vehicle to the reference trajectory, in the presence of parametric uncertainties. The stability of the presented control laws is proved in the sense of Lyapunov theory and Barbalat׳s lemma. Efficiency of presented controller using saturation functions is verified through comparing numerical simulations of both controllers.
Resumo:
Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an innovative technique is presented to design an automatic drug administration strategy for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used to design the controller (medication dosage). First, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat the nominal model patients (patients who can be described by the mathematical model used here with the nominal parameter values) effectively. However, since the system parameters for a realistic model patient can be different from that of the nominal model patients, simulation studies for such patients indicate that the nominal controller is either inefficient or, worse, ineffective; i.e. the trajectory of the number of cancer cells either shows non-satisfactory transient behavior or it grows in an unstable manner. Hence, to make the drug dosage history more realistic and patient-specific, a model-following neuro-adaptive controller is augmented to the nominal controller. In this adaptive approach, a neural network trained online facilitates a new adaptive controller. The training process of the neural network is based on Lyapunov stability theory, which guarantees both stability of the cancer cell dynamics as well as boundedness of the network weights. From simulation studies, this adaptive control design approach is found to be very effective to treat the CML disease for realistic patients. Sufficient generality is retained in the mathematical developments so that the technique can be applied to other similar nonlinear control design problems as well.
Resumo:
This paper describes a concept for a collision avoidance system for ships, which is based on model predictive control. A finite set of alternative control behaviors are generated by varying two parameters: offsets to the guidance course angle commanded to the autopilot and changes to the propulsion command ranging from nominal speed to full reverse. Using simulated predictions of the trajectories of the obstacles and ship, compliance with the Convention on the International Regulations for Preventing Collisions at Sea and collision hazards associated with each of the alternative control behaviors are evaluated on a finite prediction horizon, and the optimal control behavior is selected. Robustness to sensing error, predicted obstacle behavior, and environmental conditions can be ensured by evaluating multiple scenarios for each control behavior. The method is conceptually and computationally simple and yet quite versatile as it can account for the dynamics of the ship, the dynamics of the steering and propulsion system, forces due to wind and ocean current, and any number of obstacles. Simulations show that the method is effective and can manage complex scenarios with multiple dynamic obstacles and uncertainty associated with sensors and predictions.
Resumo:
In this paper a mixed-split scheme is proposed in the context of 2-D DPCM based LSF quantization scheme employing split vector product VQ mechanism. Experimental evaluation shows that the new scheme is successfully being able to show better distortion performance than existing safety-net scheme for noisy channel even at considerably lower search complexity, by efficiently exploiting LSF trajectory behavior across the consecutive speech frames.
Resumo:
The study presents a theory of utility models based on aspiration levels, as well as the application of this theory to the planning of timber flow economics. The first part of the study comprises a derivation of the utility-theoretic basis for the application of aspiration levels. Two basic models are dealt with: the additive and the multiplicative. Applied here solely for partial utility functions, aspiration and reservation levels are interpreted as defining piecewisely linear functions. The standpoint of the choices of the decision-maker is emphasized by the use of indifference curves. The second part of the study introduces a model for the management of timber flows. The model is based on the assumption that the decision-maker is willing to specify a shape of income flow which is different from that of the capital-theoretic optimum. The utility model comprises four aspiration-based compound utility functions. The theory and the flow model are tested numerically by computations covering three forest holdings. The results show that the additive model is sensitive even to slight changes in relative importances and aspiration levels. This applies particularly to nearly linear production possibility boundaries of monetary variables. The multiplicative model, on the other hand, is stable because it generates strictly convex indifference curves. Due to a higher marginal rate of substitution, the multiplicative model implies a stronger dependence on forest management than the additive function. For income trajectory optimization, a method utilizing an income trajectory index is more efficient than one based on the use of aspiration levels per management period. Smooth trajectories can be attained by squaring the deviations of the feasible trajectories from the desired one.
Resumo:
Details of an efficient optimal closed-loop guidance algorithm for a three-dimensional launch are presented with simulation results. Two types of orbital injections, with either true anomaly or argument of perigee being free at injection, are considered. The resulting steering-angle profile under the assumption of uniform gravity lies in a canted plane which transforms a three-dimensional problem into an equivalent two-dimensional one. Effects of thrust are estimated using a series in a recursive way. Encke's method is used to predict the trajectory during powered flight and then to compute the changes due to actual gravity using two gravity-related vectors. Guidance parameters are evaluated using the linear differential correction method. Optimality of the algorithm is tested against a standard ground-based trajectory optimization package. The performance of the algorithm is tested for accuracy, robustness, and efficiency for a sun-synchronous mission involving guidance for a multistage vehicle that requires large pitch and yaw maneuver. To demonstrate applicability of the algorithm to a range of missions, injection into a geostationary transfer orbit is also considered. The performance of the present algorithm is found to be much better than others.
Resumo:
This paper presents an advanced single network adaptive critic (SNAC) aided nonlinear dynamic inversion (NDI) approach for simultaneous attitude control and trajectory tracking of a micro-quadrotor. Control of micro-quadrotors is a challenging problem due to its small size, strong coupling in pitch-yaw-roll and aerodynamic effects that often need to be ignored in the control design process to avoid mathematical complexities. In the proposed SNAC aided NDI approach, the gains of the dynamic inversion design are selected in such a way that the resulting controller behaves closely to a pre-synthesized SNAC controller for the output regulation problem. However, since SNAC is based on optimal control theory, it makes the dynamic inversion controller to operate near optimal and enhances its robustness property as well. More important, it retains two major benefits of dynamic inversion: (i) closed form expression of the controller and (ii) easy scalability to command tracking application even without any apriori knowledge of the reference command. Effectiveness of the proposed controller is demonstrated from six degree-of-freedom simulation studies of a micro-quadrotor. It has also been observed that the proposed SNAC aided NDI approach is more robust to modeling inaccuracies, as compared to the NDI controller designed independently from time domain specifications.
Resumo:
In this paper we propose a framework for optimum steering input determination of all-wheel steer vehicles (AWSV) on rough terrains. The framework computes the steering input which minimizes the tracking error for a given trajectory. Unlike previous methodologies of computing steering inputs of car-like vehicles, the proposed methodology depends explicitly on the vehicle dynamics and can be extended to vehicle having arbitrary number of steering inputs. A fully generic framework has been used to derive the vehicle dynamics and a non-linear programming based constrained optimization approach has been used to compute the steering input considering the instantaneous vehicle dynamics, no-slip and contact constraints of the vehicle. All Wheel steer Vehicles have a special parallel steering ability where the instantaneous centre of rotation (ICR) is at infinity. The proposed framework automatically enables the vehicle to choose between parallel steer and normal operation depending on the error with respect to the desired trajectory. The efficacy of the proposed framework is proved by extensive uneven terrain simulations, for trajectories with continuous or discontinuous velocity profile.
Resumo:
This article addresses the problem of determining the shortest path that connects a given initial configuration (position, heading angle, and flight path angle) to a given rectilinear or a circular path in three-dimensional space for a constant speed and turn-rate constrained aerial vehicle. The final path is assumed to be located relatively far from the starting point. Due to its simplicity and low computational requirements the algorithm can be implemented on a fixed-wing type unmanned air vehicle in real time in missions where the final path may change dynamically. As wind has a very significant effect on the flight of small aerial vehicles, the method of optimal path planning is extended to meet the same objective in the presence of wind comparable to the speed of the aerial vehicles. But, if the path to be followed is closer to the initial point, an off-line method based on multiple shooting, in combination with a direct transcription technique, is used to obtain the optimal solution. Optimal paths are generated for a variety of cases to show the efficiency of the algorithm. Simulations are presented to demonstrate tracking results using a 6-degrees-of-freedom model of an unmanned air vehicle.
Resumo:
The viral phenomenon has garnered a great deal of attention in the recent years. Although evidence of viral success exists the underlying factors leading to the phenomenon and its measurement still remains a grey area which needs to be explored. The viral phenomenon for a product or information and its distinction based on growth curve trajectory has not been rigorously explored in the previous works. This paper aims to understand the viral phenomenon that makes products or information go viral. The viral phenomenon trajectories that distinguish the viral from a non-viral phenomenon are demonstrated. The curve fitting methodology for viral phenomenon is adopted which has not been looked into in the previous works. TED talks are analyzed to understand the diffusion pattern, essentially one or more spike, within a time period. Insights drawn indicate the characteristic viral growth trajectories and its implication on innovation.