983 resultados para Tracking (position)
Resumo:
The aging population has become a burning issue for all modern societies around the world recently. There are two important issues existing now to be solved. One is how to continuously monitor the movements of those people having suffered a stroke in natural living environment for providing more valuable feedback to guide clinical interventions. The other one is how to guide those old people effectively when they are at home or inside other buildings and to make their life easier and convenient. Therefore, human motion tracking and navigation have been active research fields with the increasing number of elderly people. However, motion capture has been extremely challenging to go beyond laboratory environments and obtain accurate measurements of human physical activity especially in free-living environments, and navigation in free-living environments also poses some problems such as the denied GPS signal and the moving objects commonly presented in free-living environments. This thesis seeks to develop new technologies to enable accurate motion tracking and positioning in free-living environments. This thesis comprises three specific goals using our developed IMU board and the camera from the imaging source company: (1) to develop a robust and real-time orientation algorithm using only the measurements from IMU; (2) to develop a robust distance estimation in static free-living environments to estimate people’s position and navigate people in static free-living environments and simultaneously the scale ambiguity problem, usually appearing in the monocular camera tracking, is solved by integrating the data from the visual and inertial sensors; (3) in case of moving objects viewed by the camera existing in free-living environments, to firstly design a robust scene segmentation algorithm and then respectively estimate the motion of the vIMU system and moving objects. To achieve real-time orientation tracking, an Adaptive-Gain Orientation Filter (AGOF) is proposed in this thesis based on the basic theory of deterministic approach and frequency-based approach using only measurements from the newly developed MARG (Magnet, Angular Rate, and Gravity) sensors. To further obtain robust positioning, an adaptive frame-rate vision-aided IMU system is proposed to develop and implement fast vIMU ego-motion estimation algorithms, where the orientation is estimated in real time from MARG sensors in the first step and then used to estimate the position based on the data from visual and inertial sensors. In case of the moving objects viewed by the camera existing in free-living environments, a robust scene segmentation algorithm is firstly proposed to obtain position estimation and simultaneously the 3D motion of moving objects. Finally, corresponding simulations and experiments have been carried out.
Resumo:
In the current study it is investigated whether peripheral vision can be used to monitor multi-ple moving objects and to detect single-target changes. For this purpose, in Experiment 1, a modified MOT setup with a large projection and a constant-position centroid phase had to be checked first. Classical findings regarding the use of a virtual centroid to track multiple ob-jects and the dependency of tracking accuracy on target speed could be successfully replicat-ed. Thereafter, the main experimental variations regarding the manipulation of to-be-detected target changes could be introduced in Experiment 2. In addition to a button press used for the detection task, gaze behavior was assessed using an integrated eye-tracking system. The anal-ysis of saccadic reaction times in relation to the motor response shows that peripheral vision is naturally used to detect motion and form changes in MOT because the saccade to the target occurred after target-change offset. Furthermore, for changes of comparable task difficulties, motion changes are detected better by peripheral vision than form changes. Findings indicate that capabilities of the visual system (e.g., visual acuity) affect change detection rates and that covert-attention processes may be affected by vision-related aspects like spatial uncertainty. Moreover, it is argued that a centroid-MOT strategy might reduce the amount of saccade-related costs and that eye-tracking seems to be generally valuable to test predictions derived from theories on MOT. Finally, implications for testing covert attention in applied settings are proposed.
Resumo:
The AEgIS experiment is an interdisciplinary collaboration between atomic, plasma and particle physicists, with the scientific goal of performing the first precision measurement of the Earth's gravitational acceleration on antimatter. The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malmberg trap and are Stark accelerated towards a moiré deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is an antihydrogen detector that will be used to demonstrate the production of antihydrogen and also to measure the temperature of the anti-atoms and the creation of a beam. The operating requirements for the detector are very challenging: it must operate at close to 4 K inside a 1 T solenoid magnetic field and identify the annihilation of the antihydrogen atoms that are produced during the 1 μs period of antihydrogen production. Our solution—called the FACT detector—is based on a novel multi-layer scintillating fiber tracker with SiPM readout and off the shelf FPGA based readout system. This talk will present the design of the FACT detector and detail the operation of the detector in the context of the AEgIS experiment.
Resumo:
The objective of this thesis is the development of cooperative localization and tracking algorithms using nonparametric message passing techniques. In contrast to the most well-known techniques, the goal is to estimate the posterior probability density function (PDF) of the position of each sensor. This problem can be solved using Bayesian approach, but it is intractable in general case. Nevertheless, the particle-based approximation (via nonparametric representation), and an appropriate factorization of the joint PDFs (using message passing methods), make Bayesian approach acceptable for inference in sensor networks. The well-known method for this problem, nonparametric belief propagation (NBP), can lead to inaccurate beliefs and possible non-convergence in loopy networks. Therefore, we propose four novel algorithms which alleviate these problems: nonparametric generalized belief propagation (NGBP) based on junction tree (NGBP-JT), NGBP based on pseudo-junction tree (NGBP-PJT), NBP based on spanning trees (NBP-ST), and uniformly-reweighted NBP (URW-NBP). We also extend NBP for cooperative localization in mobile networks. In contrast to the previous methods, we use an optional smoothing, provide a novel communication protocol, and increase the efficiency of the sampling techniques. Moreover, we propose novel algorithms for distributed tracking, in which the goal is to track the passive object which cannot locate itself. In particular, we develop distributed particle filtering (DPF) based on three asynchronous belief consensus (BC) algorithms: standard belief consensus (SBC), broadcast gossip (BG), and belief propagation (BP). Finally, the last part of this thesis includes the experimental analysis of some of the proposed algorithms, in which we found that the results based on real measurements are very similar with the results based on theoretical models.
Resumo:
Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.