948 resultados para Total world
Resumo:
Central giant cell granuloma (CGCG) of the jaws represents a localized and benign neoplastic lesion sometimes characterized by aggressive osteolytic proliferation. The World Health Organization defines it as an intraosseous lesion composed of cellular and dense connective tissues that contain multiple hemorrhagic foci, an aggregation of multinucleated giant cells, and occasional bone tissue trabeculae. The origin of this lesion is uncertain; however, factors such as local trauma, inflammation, intraosseous hemorrhage, and genetic abnormalities have been identified as possible causes. CGCG generally affects those younger than 30 years and occurs more frequently in women (2: 1). This lesion corresponds to approximately 7% of all benign tumors of the jaws, with prevalence in the anterior region of the jaw. Aggressive lesions are characterized by symptoms, such as pain, numbness, rapid growth, cortical perforation, root resorption, and a high recurrence rate after curettage. In contrast, nonaggressive CGCGs have a slow rate of growth, may contain sparse trabeculation, and are less likely to move teeth or cause root resorption or cortical perforation. Nonaggressive CGCGs are generally asymptomatic lesions and thus are frequently found on routine dental radiographs. Radiographically, the 2 forms of CGCG present as radiolucent, expansive, unilocular or multilocular masses with well-defined margins. The histopathology of CGCG is characterized by multinucleated giant cells, surrounded by round, oval, and spindle-shaped mononuclear cells, scattered in dense connective tissue with hemorrhagic and abundant vascularization foci. The final diagnosis is determined by histopathologic analysis of the biopsy specimen. The preferred treatment for CGCG consists of excisional biopsy, curettage with a safety margin, and partial or total resection of the affected bone. Conservative treatments include local injections of steroids, calcitonin, and antiangiogenic therapy. Drug treatment using antibiotics, painkillers, and corticosteroids and clinical and radiographic monitoring are necessary for approximately 10 days after surgery. There are only a few cases of spontaneous CGCG regression described in the literature; therefore, a detailed case report of CGCG regression in a 12-yearold boy with a 4-year follow-up is presented and compared with previous studies. (c) 2014 American Association of Oral and Maxillofacial Surgeons
Resumo:
Background Mental and physical disorders are associated with total disability, but their effects on days with partial disability (i.e. the ability to perform some, but not full-role, functioning in daily life) are not well understood. Aims To estimate individual (i.e. the consequences for an individual with a disorder) and societal effects (i.e. the avoidable partial disability in the society due to disorders) of mental and physical disorders on days with partial disability around the world. Method Respondents from 26 nationally representative samples (n=61 259, age 18+) were interviewed regarding mental and physical disorders, and day-to-day functioning. The Composite International Diagnostic Interview, version 3.0 (CIDI 3.0) was used to assess mental disorders; partial disability (expressed in full day equivalents) was assessed with the World Health Organization Disability Assessment Schedule in the CIDI 3.0. Results Respondents with disorders reported about 1.58 additional disability days per month compared with respondents without disorders. At the individual level, mental disorders (especially post-traumatic stress disorder, depression and bipolar disorder) yielded a higher number of days with disability than physical disorders. At the societal level, the population attributable risk proportion due to physical and mental disorders was 49% and 15% respectively. Conclusions Mental and physical disorders have a considerable impact on partial disability, at both the individual and at the societal level. Physical disorders yielded higher effects on partial disability than mental disorders.
Resumo:
Background: Stereology is an established method to extrapolate three-dimensional quantities from two-dimensional images. It was applied to placentation in the mouse, but not yet for other rodents. Herein, we provide the first study on quantitative placental development in a sigmodontine rodent species with relatively similar gestational time. Placental structure was also compared to the mouse, in order to evaluate similarities and differences in developmental patterns at the end of gestation. Methods: Fetal and placental tissues of Necromys lasiurus were collected and weighed at 3 different stages of gestation (early, mid and late gestation) for placental stereology. The total and relative volumes of placenta and of its main layers were investigated. Volume fractions of labyrinth components were quantified by the One Stop method in 31 placentae collected from different individuals, using the Mercator® software. Data generated at the end of gestation from N. lasiurus placentae were compared to those of Mus musculus domesticus obtained at the same stage. Results: A significant increase in the total absolute volumes of the placenta and its main layers occurred from early to mid-gestation, followed by a reduction near term, with the labyrinth layer becoming the most prominent area. Moreover, at the end of gestation, the total volume of the mouse placenta was significantly increased compared to that of N. lasiurus although the proportions of the labyrinth layer and junctional zones were similar. Analysis of the volume fractions of the components in the labyrinth indicated a significant increase in fetal vessels and sinusoidal giant cells, a decrease in labyrinthine trophoblast whereas the proportion of maternal blood space remained stable in the course of gestation. On the other hand, in the mouse, volume fractions of fetal vessels and sinusoidal giant cells decreased whereas the volume fraction of labyrinthine trophoblast increased compared to N. lasiurus placenta. Conclusions: Placental development differed between N. lasiurus and M. musculus domesticus. In particular, the low placental efficiency in N. lasiurus seemed to induce morphological optimization of fetomaternal exchanges. In conclusion, despite similar structural aspects of placentation in these species, the quantitative dynamics showed important differences.
Resumo:
Purpose Total knee arthroplasty (TKA) is currently the international standard of care for treating degenerative and rheumatologic knee joint disease, as well as certain knee joint fractures. We sought to answer the following three research questions: (1) What is the international variance in primary and revision TKA rates around the world? (2) How do patient demographics (e.g., age, gender) vary internationally? (3) How have the rates of TKA utilization changed over time? Methods The survey included 18 countries with a total population of 755 million, and an estimated 1,324,000 annual primary and revision total knee procedures. Ten national inpatient databases were queried for this study from Canada, the United States, Finland, France, Germany, Italy, the Netherlands, Portugal, Spain, and Switzerland. Inpatient data were also compared with published registry data for eight countries with operating arthroplasty registers (Denmark, England & Wales, Norway, Romania, Scotland, Sweden, Australia, and New Zealand). Results The average and median rate of primary and revision (combined) total knee replacement was 175 and 149 procedures/100,000 population, respectively, and ranged between 8.8 and 234 procedures/100,000 population. We observed that the procedure rate significantly increased over time for the countries in which historical data were available. The compound annual growth in the incidence of TKA ranged by country from 5.3% (France) to 17% (Portugal). We observed a nearly 27-fold range of TKA utilization rates between the 18 different countries included in the survey. Conclusion It is apparent from the results of this study that the demand for TKA has risen substantially over the past decade in countries around the world.
Resumo:
BACKGROUND: Cardiac surgery is the reference treatment for patients with left main (LM) disease, although percutaneous coronary intervention with drug-eluting stents is emerging as a possible alternative. The objective of this registry was to evaluate the 2-year outcome of elective percutaneous coronary intervention for unprotected LM disease with paclitaxel-eluting stents. METHODS AND RESULTS: A total of 291 patients were prospectively included from 4 centers. Acute myocardial infarction and cardiogenic shock were the only exclusion criteria. Patients were 69+/-11 years old, 29% were diabetic, and 25% had 3-vessel disease. For distal LM lesions (78%), the provisional side-branch T-stenting approach was used in 92% of cases and final kissing balloon inflation in 97%. Angiographic success was obtained in 99.7% of cases. At 2-year follow-up, the total cardiac death rate was 5.4% (1 EuroSCORE point was associated with a 15% [95% confidence interval 2.9% to 28.2%, P=0.013] higher risk of cardiac death), target-lesion revascularization was 8.7%, and incidence of Q-wave or non-Q-wave myocardial infarction was 0.9% and 3.1%, respectively. The combined end point occurred in 15.8% of cases and stroke in 0.7%. The incidence of definite and probable LM stent thrombosis was 0.7%, whereas the incidence of any stent thrombosis was 3.8%, with a higher risk in patients with side-branch stenting in the presence of LM bifurcation lesions (hazard ratio 9.6, 95% confidence interval 1.2 to 77.7, P=0.035). CONCLUSIONS: Unprotected LM stenting with paclitaxel-eluting stents, with a strategy of provisional side-branch T-stenting for distal lesions, provides excellent acute angiographic results and good mid-term clinical outcomes, with a 15.8% rate of major adverse cardiac events at 2-year follow-up.
Resumo:
The introduction and establishment of non-indigenous species through human activities often poses a major threat to natural biodiversity. In many parts of the world management efforts are therefore focused on their eradication. The environment of World Heritage sub-Antarctic Macquarie Island has been severely damaged by non-indigenous species including rabbits, rats and mice, introduced from the late AD 1800s. An extensive eradication programme is now underway which aims to remove all rabbits and rodents. To provide a long-term context for assessing the Island's pre-invasion state, invasion impacts, and to provide a baseline for monitoring its recovery, we undertook a palaeoecological study using proxies in a lake sediment core. Sedimentological and diatom analyses revealed an unproductive catchment and lake environment persisted for ca. 7100 years prior to the introduction of the invasive species. After ca. AD 1898, unprecedented and statistically significant environmental changes occurred. Lake sediment accumulation rates increased >100 times due to enhanced catchment inputs and within-lake production. Total carbon and total nitrogen contents of the sediments increased by a factor of four. The diatom flora became dominated by two previously rare species. The results strongly suggest a causal link between the anthropogenic introduction of rabbits and the changes identified in the lake sediments. This study provides an example of how palaeoecology may be used to determine baseline conditions prior to the introduction of non-indigenous species, quantify the timing and extent of changes, and help monitor the recovery of the ecosystem and natural biodiversity following successful non-indigenous species eradication programmes.
Resumo:
Complementarity that leads to more efficient resource use is presumed to be a key mechanism explaining positive biodiversity–productivity relationships but has been described solely for experimental set-ups with controlled environmental settings or for very short gradients of abiotic conditions, land-use intensity and biodiversity. Therefore, we analysed plant diversity effects on nitrogen dynamics across a broad range of Central European grasslands. The 15N natural abundance in soil and plant biomass reflects the net effect of processes affecting ecosystem N dynamics. This includes the mechanism of complementary resource utilization that causes a decrease in the 15N isotopic signal. We measured plant species richness, natural abundance of 15N in soil and plants, above-ground biomass of the community and three single species (an herb, grass and legume) and a variety of additional environmental variables in 150 grassland plots in three regions of Germany. To explore the drivers of the nitrogen dynamics, we performed several analyses of covariance treating the 15N isotopic signals as a function of plant diversity and a large set of covariates. Increasing plant diversity was consistently linked to decreased δ15N isotopic signals in soil, above-ground community biomass and the three single species. Even after accounting for multiple covariates, plant diversity remained the strongest predictor of δ15N isotopic signals suggesting that higher plant diversity leads to a more closed nitrogen cycle due to more efficient nitrogen use. Factors linked to increased δ15N values included the amount of nitrogen taken up, soil moisture and land-use intensity (particularly fertilization), all indicators of the openness of the nitrogen cycle due to enhanced N-turnover and subsequent losses. Study region was significantly related to the δ15N isotopic signals indicating that regional peculiarities such as former intensive land use could strongly affect nitrogen dynamics. Synthesis. Our results provide strong evidence that the mechanism of complementary resource utilization operates in real-world grasslands where multiple external factors affect nitrogen dynamics. Although single species may differ in effect size, actively increasing total plant diversity in grasslands could be an option to more effectively use nitrogen resources and to reduce the negative environmental impacts of nitrogen losses.
Resumo:
Total war is a controversial term used in the past by politicians, publicists and military officers as well as by computer specialists and academics in the present. Since its conception by French politicians during the First World War in a time of severe crisis (1916/17), it has become a term used by historians and other academics to cover a wide array of elements when looking at wars of the past. A real total war was and is impossible. Elements of total war – total war aims, total methods of warfare, total mobilization and total control – can, however, be identified and can serve as a useful tool for further transnational research on war.
Resumo:
Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ13C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier 13C due to closing stomata leading to an enrichment of 13C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ13C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ13C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ13C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change.
Resumo:
Do openness and human capital accumulation promote economic growth? While intuition argues yes, the existing empirical evidence provides mixed support for such assertions. We examine Cobb-Douglas production function specifications for a 30-year panel of 83 countries representing all regions of the world and all income groups. We estimate and compare labor and capital elasticities of output per worker across each of several income and geographic groups, finding significant differences in production technology. Then we estimate the total factor productivity series for each classification. Using determinants of total factor productivity that include, among many others, human capital, openness, and distortion of domestic prices relative to world prices, we find significant differences in results between the overall sample and sub-samples of countries. In particular, a policy of outward orientation may or may not promote growth in specific country groups. even if geared to reducing price distortion and increasing openness. Human capital plays a smaller role in enhancing growth through total factor productivity.
Resumo:
OBJECTIVE: To systematically review published literature to examine the complications associated with the use of misoprostol and compare these complications to those associated with other forms of abortion induction. ^ DATA SOURCES: Studies were identified through searches of medical literature databases including Medline (Ovid), PubMed (NLM), LILACS, sciELO, and AIM (AFRO), and review of references of relevant articles. ^ STUDY SELECTION AND METHODS: A descriptive systematic review that included studies reported in English and published before December 2012. Eligibility criteria included: misoprostol (with or without other methods) and any other method of abortion in a developing country, as well as quantitative data on the complication of each method. The following is information extracted from each study: author/year, country/city, study design/study sample, age range, setting of data collection, sample size, the method of abortion induction, the number of cases for each method, and the percentage of complications with each method. RESULTS: A total of 4 studies were identified (all in Latin America) describing post-abortion complications of misoprostol and other methods in countries where abortion is generally considered unsafe and/or illegal. The four studies reported on a range of complications including: bleeding, infection, incomplete abortion, intense pelvic pain, uterine perforation, headache, diarrhea, nausea, mechanical lesions, and systemic collapse. The most prevalent complications of misoprostol-induced abortion reported were: bleeding (7-82%), incomplete abortion (33-70%), and infection (0.8-67%). The prevalence of these complications reported from other abortion methods include: bleeding (16-25%), incomplete abortion (15-82%), and infection (13-50%). ^ CONCLUSION: The literature identified by this systematic review is inadequate for determining the complications of misoprostol used in unsafe settings. Abortion is considered an illicit behavior in these countries, therefore making it difficult to investigate the details needed to conduct a study on abortion complications. Given the differences between the reviewed studies as well as a variety of study limitations, it is not possible to draw firm conclusions about the rates of specific-abortion related complications.^
Resumo:
A portable Fourier transform spectrometer (FTS), model EM27/SUN, was deployed onboard the research vessel Polarstern to measure the column-average dry air mole fractions of carbon dioxide (XCO2) and methane (XCH4) by means of direct sunlight absorption spectrometry. We report on technical developments as well as data calibration and reduction measures required to achieve the targeted accuracy of fractions of a percent in retrieved XCO2 and XCH4 while operating the instrument under field conditions onboard the moving platform during a 6-week cruise on the Atlantic from Cape Town (South Africa, 34° S, 18° E; 5 March 2014) to Bremerhaven (Germany, 54° N, 19° E; 14 April 2014). We demonstrate that our solar tracker typically achieved a tracking precision of better than 0.05° toward the center of the sun throughout the ship cruise which facilitates accurate XCO2 and XCH4 retrievals even under harsh ambient wind conditions. We define several quality filters that screen spectra, e.g., when the field of view was partially obstructed by ship structures or when the lines-of-sight crossed the ship exhaust plume. The measurements in clean oceanic air, can be used to characterize a spurious air-mass dependency. After the campaign, deployment of the spectrometer alongside the TCCON (Total Carbon Column Observing Network) instrument at Karlsruhe, Germany, allowed for determining a calibration factor that makes the entire campaign record traceable to World Meteorological Organization (WMO) standards. Comparisons to observations of the GOSAT satellite and concentration fields modeled by the European Centre for Medium-Range Weather Forecasts (ECMWF) Copernicus Atmosphere Monitoring Service (CAMS) demonstrate that the observational setup is well suited to provide validation opportunities above the ocean and along interhemispheric transects.
Resumo:
The smallest marine phytoplankton, collectively termed picophytoplankton, have been routinely enumerated by flow cytometry since the late 1980s, during cruises throughout most of the world ocean. We compiled a database of 40,946 data points, with separate abundance entries for Prochlorococcus, Synechococcus and picoeukaryotes. We use average conversion factors for each of the three groups to convert the abundance data to carbon biomass. After gridding with 1° spacing, the database covers 2.4% of the ocean surface area, with the best data coverage in the North Atlantic, the South Pacific and North Indian basins. The average picophytoplankton biomass is 12 ± 22 µg C L-1 or 1.9 g C m-2. We estimate a total global picophytoplankton biomass, excluding N2-fixers, of 0.53 - 0.74 Pg C (17 - 39 % Prochlorococcus, 12 - 15 % Synechococcus and 49 - 69 % picoeukaryotes). Future efforts in this area of research should focus on reporting calibrated cell size, and collecting data in undersampled regions.