193 resultados para Torques gravitacionais
Resumo:
In numerous motor tasks, muscles around a joint act coactively to generate opposite torques. A variety of indexes based on electromyography signals have been presented in the literature to quantify muscle coactivation. However, it is not known how to estimate it reliably using such indexes. The goal of this study was to test the reliability of the estimation of muscle coactivation using electromyography. Isometric coactivation was obtained at various muscle activation levels. For this task, any coactivation measurement/index should present the maximal score (100% of coactivation). Two coactivation indexes were applied. In the first, the antagonistic muscle activity (the lower electromyographic signal between two muscles that generate opposite joint torques) is divided by the mean between the agonistic and antagonistic muscle activations. In the second, the ratio between antagonistic and agonistic muscle activation is calculated. Moreover, we computed these indexes considering different electromyographic amplitude normalization procedures. It was found that the first algorithm, with all signals normalized by their respective maximal voluntary coactivation, generates the index closest to the true value (100%), reaching 92 ± 6%. In contrast, the coactivation index value was 82 ± 12% when the second algorithm was applied and the electromyographic signal was not normalized (P < 0.04). The new finding of the present study is that muscle coactivation is more reliably estimated if the EMG signals are normalized by their respective maximal voluntary contraction obtained during maximal coactivation prior to dividing the antagonistic muscle activity by the mean between the agonistic and antagonistic muscle activations.
Resumo:
The cure characteristics and mechanical properties of short nylon fiber- styrene /whole tyre reclaim (SBR/WTR) composites with and without an interfacial bonding agent based on 4,4 diphenyl methane diisocyanate and polyethylene glycol (MDI/PEG) have been studied. An 80:40 blend of SBR/ WTR reinforced with 20 phr of short nylon fiber has been selected and the MDI/ PEG ratio has been changed from 0.67:1 to 2:1. The minimum and maximum torques increased with isocyanate concentration. The scorch time and cure time showed an initial reduction. The cure rate showed an initial improvement. Tensile strength, tear strength and abrasion resistance increased with MDI/PEG ratio, these values were higher in longitudinal direction. Resilience and compression set increased with isocyanate concentration.
Resumo:
This paper presents the optimal design of a sur- face mounted permanent magnet Brushless DC mo- tor (PMBLDC) meant for spacecraft applications. The spacecraft applications requires the choice of a torques motor with high torque density, minimum cogging torque, better positional stability and high torque to inertia ratio. Performance of two types of machine con¯gurations viz Slotted PMBLDC and Slotless PMBLDC with halbach array are compared with the help of analytical and FE methods. It is found that unlike a Slotted PMBLDC motor, the Slotless type with halbach array develops zero cogging torque without reduction in the developed torque. Moreover, the machine being coreless provides high torque to inertia ratio and zero magnetic stiction
Resumo:
Many approaches to force control have assumed the ability to command torques accurately. Concurrently, much research has been devoted to developing accurate torque actuation schemes. Often, torque sensors have been utilized to close a feedback loop around output torque. In this paper, the torque control of a brushless motor is investigated through: the design, construction, and utilization of a joint torque sensor for feedback control; and the development and implementation of techniques for phase current based feedforeward torque control. It is concluded that simply closing a torque loop is no longer necessarily the best alternative since reasonably accurate current based torque control is achievable.
Resumo:
The control of aerial gymnastic maneuvers is challenging because these maneuvers frequently involve complex rotational motion and because the performer has limited control of the maneuver during flight. A performer can influence a maneuver using a sequence of limb movements during flight. However, the same sequence may not produce reliable performances in the presence of off-nominal conditions. How do people compensate for variations in performance to reliably produce aerial maneuvers? In this report I explore the role that passive dynamic stability may play in making the performance of aerial maneuvers simple and reliable. I present a control strategy comprised of active and passive components for performing robot front somersaults in the laboratory. I show that passive dynamics can neutrally stabilize the layout somersault which involves an "inherently unstable" rotation about the intermediate principal axis. And I show that a strategy that uses open loop joint torques plus passive dynamics leads to more reliable 1 1/2 twisting front somersaults in simulation than a strategy that uses prescribed limb motion. Results are presented from laboratory experiments on gymnastic robots, from dynamic simulation of humans and robots, and from linear stability analyses of these systems.
Resumo:
The transformation from high level task specification to low level motion control is a fundamental issue in sensorimotor control in animals and robots. This thesis develops a control scheme called virtual model control which addresses this issue. Virtual model control is a motion control language which uses simulations of imagined mechanical components to create forces, which are applied through joint torques, thereby creating the illusion that the components are connected to the robot. Due to the intuitive nature of this technique, designing a virtual model controller requires the same skills as designing the mechanism itself. A high level control system can be cascaded with the low level virtual model controller to modulate the parameters of the virtual mechanisms. Discrete commands from the high level controller would then result in fluid motion. An extension of Gardner's Partitioned Actuator Set Control method is developed. This method allows for the specification of constraints on the generalized forces which each serial path of a parallel mechanism can apply. Virtual model control has been applied to a bipedal walking robot. A simple algorithm utilizing a simple set of virtual components has successfully compelled the robot to walk eight consecutive steps.
Resumo:
Since robots are typically designed with an individual actuator at each joint, the control of these systems is often difficult and non-intuitive. This thesis explains a more intuitive control scheme called Virtual Model Control. This thesis also demonstrates the simplicity and ease of this control method by using it to control a simulated walking hexapod. Virtual Model Control uses imagined mechanical components to create virtual forces, which are applied through the joint torques of real actuators. This method produces a straightforward means of controlling joint torques to produce a desired robot behavior. Due to the intuitive nature of this control scheme, the design of a virtual model controller is similar to the design of a controller with basic mechanical components. The ease of this control scheme facilitates the use of a high level control system which can be used above the low level virtual model controllers to modulate the parameters of the imaginary mechanical components. In order to apply Virtual Model Control to parallel mechanisms, a solution to the force distribution problem is required. This thesis uses an extension of Gardner`s Partitioned Force Control method which allows for the specification of constrained degrees of freedom. This virtual model control technique was applied to a simulated hexapod robot. Although the hexapod is a highly non-linear, parallel mechanism, the virtual models allowed text-book control solutions to be used while the robot was walking. Using a simple linear control law, the robot walked while simultaneously balancing a pendulum and tracking an object.
Resumo:
This report describes development of micro-fabricated piezoelectric ultrasonic motors and bulk-ceramic piezoelectric ultrasonic motors. Ultrasonic motors offer the advantage of low speed, high torque operation without the need for gears. They can be made compact and lightweight and provide a holding torque in the absence of applied power, due to the traveling wave frictional coupling mechanism between the rotor and the stator. This report covers modeling, simulation, fabrication and testing of ultrasonic motors. Design of experiments methods were also utilized to find optimal motor parameters. A suite of 8 mm diameter x 3 mm tall motors were machined for these studies and maximum stall torques as large as 10^(- 3) Nm, maximum no-load speeds of 1710 rpm and peak power outputs of 27 mW were realized. Aditionally, this report describes the implementation of a microfabricated ultrasonic motor using thin-film lead zirconate titanate. In a joint project with the Pennsylvania State University Materials Research Laboratory and MIT Lincoln Laboratory, 2 mm and 5 mm diameter stator structures were fabricated on 1 micron thick silicon nitride membranes. Small glass lenses placed down on top spun at 100-300 rpm with 4 V excitation at 90 kHz. The large power densities and stall torques of these piezoelectric ultrasonic motors offer tremendous promis for integrated machines: complete intelligent, electro-mechanical autonomous systems mass-produced in a single fabrication process.
Resumo:
Using the MIT Serial Link Direct Drive Arm as the main experimental device, various issues in trajectory and force control of manipulators were studied in this thesis. Since accurate modeling is important for any controller, issues of estimating the dynamic model of a manipulator and its load were addressed first. Practical and effective algorithms were developed fro the Newton-Euler equations to estimate the inertial parameters of manipulator rigid-body loads and links. Load estimation was implemented both on PUMA 600 robot and on the MIT Serial Link Direct Drive Arm. With the link estimation algorithm, the inertial parameters of the direct drive arm were obtained. For both load and link estimation results, the estimated parameters are good models of the actual system for control purposes since torques and forces can be predicted accurately from these estimated parameters. The estimated model of the direct drive arm was them used to evaluate trajectory following performance by feedforward and computed torque control algorithms. The experimental evaluations showed that the dynamic compensation can greatly improve trajectory following accuracy. Various stability issues of force control were studied next. It was determined that there are two types of instability in force control. Dynamic instability, present in all of the previous force control algorithms discussed in this thesis, is caused by the interaction of a manipulator with a stiff environment. Kinematics instability is present only in the hybrid control algorithm of Raibert and Craig, and is caused by the interaction of the inertia matrix with the Jacobian inverse coordinate transformation in the feedback path. Several methods were suggested and demonstrated experimentally to solve these stability problems. The result of the stability analyses were then incorporated in implementing a stable force/position controller on the direct drive arm by the modified resolved acceleration method using both joint torque and wrist force sensor feedbacks.
Resumo:
Chain in both its forms - common (or stud-less) and stud-link - has many engineering applications. It is widely used as a component in the moorings of offshore floating systems, where its ruggedness and corrosion resistance make it an attractive choice. Chain exhibits some interesting behaviour in that when straight and subject to an axial load it does not twist or generate any torque, but if twisted or loaded when in a twisted condition it behaves in a highly non-linear manner, with the torque dependent upon the level of twist and axial load. Clearly an understanding of the way in which chains may behave and interact with other mooring components (such as wire rope, which also exhibits coupling between axial load and generated torque) when they are in service is essential. However, the sizes of chain that are in use in offshore moorings (typical bar diameters are 75 mm and greater) are too large to allow easy testing. This paper, which is in two parts, aims to address the issues and considerations relevant to torque in mooring chain. The first part introduces a frictionless theory that predicts the resultant torques and 'lift' in the links as non-dimensionalized functions of the angle of twist. Fortran code is presented in an Appendix, which allows the reader to make use of the analysis. The second part of the paper presents results from experimental work on both stud-less (41 mm) and stud-link (20.5 and 56 mm) chains. Torsional data are presented in both 'constant twist' and 'constant load' forms, as well as considering the lift between the links.
Resumo:
Chain is a commonly used component in offshore moorings where its ruggedness and corrosion resistance make it an attractive choice. Another attractive property is that a straight chain is inherently torque balanced. Having said this, if a chain is loaded in a twisted condition, or twisted when under load, it exhibits highly non-linear torsional behaviour. The consequences of this behaviour can cause handling difficulties or may compromise the integrity of the mooring system, and care must be taken to avoid problems for both the chain and any components to which it is connected. Even with knowledge of the potential problems, there will always be occasions where, despite the utmost care, twist is unavoidable. Thus it is important for the engineer to be able to determine the effects. A frictionless theory has been developed in Part 1 of the paper that may be used to predict the resultant torques and movement or 'lift' in the links as non-dimensional functions of the angle of twist. The present part of the paper describes a series of experiments undertaken on both studless and stud-link chain to allow comparison of this theoretical model with experimental data. Results are presented for the torsional response and link lift for 'constant twist' and 'constant load' type tests on chains of three different link sizes.
Resumo:
Manipulation of an object by a multi-fingered robot hand requires task planning which involves computation of joint space vectors and fingertip forces. To implement a task as fast as possible, computations have to be carried out in minimum time. The state of the art in manipulation by multi-fingered robot hand designs has shown the possible use of remotely driven finger joints. Such remotely driven hands require computation of tendon displacement for evaluating joint space vectors before signals are sent to actuators. Alternatively, a direct drive hand is a mechanical hand in which the shafts of articulated joints are directly coupled to the rotors of motors with high output torques. This article has been divided into two main sections. The first section presents a brief view of manipulation using a direct drive approach. Meanwhile, the other section presents ongoing research which is being carried out to design a four-finger articulated hand in the Department of Cybernetics at the University of Reading.
Resumo:
This paper discusses a new method of impedance control that has been successfully implemented on the master robot of a teleoperation system. The method involves calibrating the robot to quantify the effect of adjustable controller parameters on the impedances along its different axes. The empirical equations relating end-effector impedance to the controller's feedback gains are obtained by performing system identification tests along individual axes of the robot. With these equations, online control of end-effector stiffness and damping is possible without having to monitor joint torques or solving complex algorithms. Hard contact conditions and compliant interfaces have been effectively demonstrated on a telemanipulation test-bed using appropriate combinations of stiffness and damping settings obtained by this method.
Resumo:
It is thought that the secondary stars in cataclysmic variables (CVs) may undergo a period of mass loss in the form of a wind during the evolution of the system (Mullan et al. 1992). This wind is thought to magnetically brake the secondary star with a time-scale ~ 10^8 yr (e.g. van Paradijs 1986). When the secondary’s spin has been brought close to synchronism with the orbit it is possible for tidal torques to lock the secondary in synchronous rotation.
Resumo:
Theoretical estimates for the cutoff errors in the Ewald summation method for dipolar systems are derived. Absolute errors in the total energy, forces and torques, both for the real and reciprocal space parts, are considered. The applicability of the estimates is tested and confirmed in several numerical examples. We demonstrate that these estimates can be used easily in determining the optimal parameters of the dipolar Ewald summation in the sense that they minimize the computation time for a predefined, user set, accuracy.