151 resultados para Topsoil
Resumo:
The experimental variogram computed in the usual way by the method of moments and the Haar wavelet transform are similar in that they filter data and yield informative summaries that may be interpreted. The variogram filters out constant values; wavelets can filter variation at several spatial scales and thereby provide a richer repertoire for analysis and demand no assumptions other than that of finite variance. This paper compares the two functions, identifying that part of the Haar wavelet transform that gives it its advantages. It goes on to show that the generalized variogram of order k=1, 2, and 3 filters linear, quadratic, and cubic polynomials from the data, respectively, which correspond with more complex wavelets in Daubechies's family. The additional filter coefficients of the latter can reveal features of the data that are not evident in its usual form. Three examples in which data recorded at regular intervals on transects are analyzed illustrate the extended form of the variogram. The apparent periodicity of gilgais in Australia seems to be accentuated as filter coefficients are added, but otherwise the analysis provides no new insight. Analysis of hyerpsectral data with a strong linear trend showed that the wavelet-based variograms filtered it out. Adding filter coefficients in the analysis of the topsoil across the Jurassic scarplands of England changed the upper bound of the variogram; it then resembled the within-class variogram computed by the method of moments. To elucidate these results, we simulated several series of data to represent a random process with values fluctuating about a mean, data with long-range linear trend, data with local trend, and data with stepped transitions. The results suggest that the wavelet variogram can filter out the effects of long-range trend, but not local trend, and of transitions from one class to another, as across boundaries.
Resumo:
Relations between the apparent electrical conductivity of the soil (ECa) and top- and sub-soil physical properties were examined for two arable fields in southern England (Crowmarsh Battle Farms and the Yattendon Estate). The spatial variation of ECa and the soil properties was explored geostatistically. The variogram ranges showed that ECa varied on a similar spatial scale to many of the soil physical properties in both fields. Several features in the map of kriged predictions of ECa were also evident in maps of the soil properties. In addition, the correlation coefficients showed a strong relation between ECa and several soil properties. A moving correlation analysis enabled differences in the relations between ECa and the soil properties to be examined within the fields. The results indicated that relations were inconsistent; they were stronger in some areas than others. A regression of ECa on the principal component scores of the leading components for both fields showed that the first two components accounted for a large proportion of the variance in ECa, whereas the others accounted for little or none. For Crowmarsh topsoil sand and clay, loss on ignition and volumetric water measured in the autumn had large correlations on the first component, and for Yattendon they were large for topsoil sand and clay, and autumn and spring volumetric water. The cross-variograms suggested strong coregionalization between ECa and several soil physical properties; in particular subsoil sand and silt at Crowmarsh, and subsoil sand and clay at Yattendon. The structural correlations from the linear model of coregionalization confirmed the strength of the relations between ECa and the subsoil properties. Nevertheless, no one property was consistently important for both fields. Although a map of ECa can indicate the general patterns of spatial variation in the soil, it is not a substitute for information on soil properties obtained by sampling and analysing the soil. Nevertheless, it could be used to guide further sampling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The relations between soil electrical conductivity (ECa) and top- and sub-soil physical properties were examined for an arable field in England. The correlation coefficients between ECa and the soil particle size fractions were large and their cross variograms showed that the coregionalization was also strong. The coregionalization was stronger for the subsoil properties than for the topsoil, the reverse to the correlation coefficients. The relations between ECa and some soil properties, such as clay and water content, appear complex and emphasize that a map of ECa cannot substitute for sampling the soil.
Resumo:
Structure is an important physical feature of the soil that is associated with water movement, the soil atmosphere, microorganism activity and nutrient uptake. A soil without any obvious organisation of its components is known as apedal and this state can have marked effects on several soil processes. Accurate maps of topsoil and subsoil structure are desirable for a wide range of models that aim to predict erosion, solute transport, or flow of water through the soil. Also such maps would be useful to precision farmers when deciding how to apply nutrients and pesticides in a site-specific way, and to target subsoiling and soil structure stabilization procedures. Typically, soil structure is inferred from bulk density or penetrometer resistance measurements and more recently from soil resistivity and conductivity surveys. To measure the former is both time-consuming and costly, whereas observations made by the latter methods can be made automatically and swiftly using a vehicle-mounted penetrometer or resistivity and conductivity sensors. The results of each of these methods, however, are affected by other soil properties, in particular moisture content at the time of sampling, texture, and the presence of stones. Traditional methods of observing soil structure identify the type of ped and its degree of development. Methods of ranking such observations from good to poor for different soil textures have been developed. Indicator variograms can be computed for each category or rank of structure and these can be summed to give the sum of indicator variograms (SIV). Observations of the topsoil and subsoil structure were made at four field sites where the soil had developed on different parent materials. The observations were ranked by four methods and indicator and the sum of indicator variograms were computed and modelled for each method of ranking. The individual indicators were then kriged with the parameters of the appropriate indicator variogram model to map the probability of encountering soil with the structure represented by that indicator. The model parameters of the SIVs for each ranking system were used with the data to krige the soil structure classes, and the results are compared with those for the individual indicators. The relations between maps of soil structure and selected wavebands from aerial photographs are examined as basis for planning surveys of soil structure. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Enhanced phytoextraction proposes the use of soil amendments to increase the heavy-metal content of above-ground harvestable plant tissues. This study compares the effect of synthetic aminopolycarboxylic acids [ethylenediamine tetraacetatic acid (EDTA), nitriloacetic acid (NTA), and diethylenetriamine pentaacetic acid (DTPA)] with a number of biodegradable, low-molecular weight, organic acids (citric acid, ascorbic acid, oxalic acid, salicylic acid, and NH4 acetate) as potential soil amendments for enhancing phytoextraction of heavy metals (Cu, Zn, Cd, Pb, and Ni) by Zea mays. The treatments in this study were applied at a dose of 2 mmol/kg(-1) 1 d before sowing. To compare possible effects between presow and postgermination treatments, a second smaller experiment was conducted in which EDTA, citric acid, and NH4 acetate were added 10 d after germination as opposed to 1 d before sowing. The soil used in this screening was a moderately contaminated topsoil derived from a dredged sediment disposal site. This site has been in an oxidized state for more than 8 years before being used in this research. The high carbonate, high organic matter, and high clay content characteristic to this type of sediment are thought to suppress heavy-metal phytoavailability. Both EDTA and DTPA resulted in increased levels of heavy metals in the above-ground biomass. However, the observed increases in uptake were not as large as reported in the literature. Neither the NTA nor organic acid treatments had any significant effect on uptake when applied prior to sowing. This was attributed to the rapid mineralization of these substances and the relatively low doses applied. The generally low extraction observed in this experiment restricts the use of phytoextraction as an effective remediation alternative under the current conditions, with regard to amendments used, applied dose (2 mmol/kg(-1) soil), application time (presow), plant species (Zea mays), and sediment (calcareous clayey soil) under study.
Resumo:
A method is presented which allows thermal inertia (the soil heat capacity times the square root of the soil thermal diffusivity, C(h)rootD(h)), to be estimated remotely from micrometeorological observations. The method uses the drop in surface temperature, T-s, between sunset and sunrise, and the average night-time net radiation during that period, for clear, still nights. A Fourier series analysis was applied to analyse the time series of T-s . The Fourier series constants, together with the remote estimate of thermal inertia, were used in an analytical expression to calculate diurnal estimates of the soil heat flux, G. These remote estimates of C(h)rootD(h) and G compared well with values derived from in situ sensors. The remote and in situ estimates of C(h)rootD(h) both correlated well with topsoil moisture content. This method potentially allows area-average estimates of thermal inertia and soil heat flux to be derived from remote sensing, e.g. METEOSAT Second Generation, where the area is determined by the sensor's height and viewing angle. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Allochthonous Norway spruce stands in the Kysucké Beskydy Mts. (north-western Slovakia) have been exposed to substantial acid deposition in the recent past and grow in acidified soil conditions with mean pH of about 4.0 in the topsoil. We selected 90 spruce trees representing 30 triples of different crown status: healthy, stressed and declining to assess the relationship between crown and fine root status. Sequential coring and in-growth bags were applied to each triplet to investigate fine root biomass and growth in the soil depths of 0-10 and 10-20 cm. Fine root quantity (biomass and necromass), turnover (production over standing stock), morphological features (specific root length, root tip density) and chemical properties (Ca:Al molar ratio) were compared among the abovementioned health status categories. Living fine root biomass decreased with increasing stress, while the ratio of living to dead biomass increased. Annual fine root production decreased and specific root length increased in stressed trees when compared to healthy or declining trees, a situation which may be related to the position of trees in the canopy (healthy and declining – dominant, stressed – co-dominant). The Ca:Al ratio decreased with increasing crown damage, indicating a decreased ability to filter out aluminium. In conclusion, fine root status appears to be linked to visible crown damage and can be used as a tree health indicator.
Resumo:
The effects of different water application rates (3, 10, 15 and 30 mm/h) and of topsoil removal on the rate of downward water movement through the cryoturbated chalk zone in southern England were investigated in situ. During and after each application of water, changes in water content and matric potential of the profile were monitored and percolate was collected in troughs. The measured water breakthrough time showed that water moved to 1.2 m depth quickly (in 8.2 h) even with application rate as low as 3 mm/h and that the time was only 3 h when water was applied at a rate of 15 mm/ h. These breakthrough times were about 150 and 422 fold shorter, respectively, than those expected if the water had been conducted by the matrix alone. Percolate was collected in troughs within 3.5 h at 1.2 m depth when water was applied at 30 mm/h and the quantity collected indicated that a significant amount of the surface applied water moved downward through inter-aggregate pores. The small increase in volumetric water content (about 3%) in excess of matrix water content resulted in a large increase in pore water velocities, from 0.20 to 5.3 m/d. The presence of soil layer had effect on the time taken for water to travel through the cryoturbated chalk layer and in the soil layer, water took about 1-2 h to pass thorough, depending on the intensity.
Resumo:
This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM) datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR). Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The species of cover crops in pre-harvest of maize crop may influence the soil chemical properties. The objective was to evaluate soil fertility due to the use of plant species cover, previously cultivated with maize crop in no-tillage and conventional and subjected to nitrogen. The experiment was conducted at UNESP in Jaboticabal-SP, in an Oxisol clay during the crop years 2000/01, 2001/02 and 2002/03. The experimental design was randomized blocks in split plots with four replications. The treatments consisted of nitrogen (0, 60 and 120 kg N ha(-1)) and planting systems, and three under no-tillage system with the use of cover crops: Brachiaria, millet, Crotalaria and lablab, and under a conventional tillage. We evaluated at the flowering stage of corn, covering the crop year 2002-2003, the chemical soil layers (0-0.05, 0.05-0.10, 0.10-0.20; 0.20-0.30 m deep). Tillage systems and nitrogen levels influenced differently to the chemical properties of soil layers studied. Regardless of the nitrogen used in the conventional treatment showed lower organic matter content, calcium and value of sum of bases in the topsoil.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pasture degradation is one of the greatest problems related to land use in the Amazon region, forcing farmers to open new forest areas. Many studies have identified the causes and the factors involved in this degradation process, in an attempt to reverse the situation. The purpose of this study was to examine the relationship between pasture degradation and some soil properties, to try to identify the most significant soil features in the degradation process. A cattle raising farm in the eastern Amazon region, with pastures of different ages and degrees of degradation, was used as the site for this study: a primary forest area, PN; three Guinea grass (Panicum maximum Jacq.) pastures in an increasingly degraded sequence-P1, P2 and P3; one Gamba grass (Andropogon gayanus Kunth) pasture following an extremely degraded Guinea grass pasture, P4. Aboveground phytomass data showed differences between the pastures, reflecting initially observed degradation levels. Grass biomass decreased sharply from P1 to P2 and disappeared at P3. Pasture recovery with Gamba grass at P4 was very successful, with grass biomass higher than P1 and weed biomass smaller than P2 and P3. Root biomass also decreased with pasture degradation. Soil bulk density increased with pasture decrease at the topsoil layer. Results from the soil chemical analysis showed that there were no signs of decrease in organic carbon and total nitrogen after the forest was transformed into pasture. In all pastures, degraded or not, the soil pH, the sum of bases and the saturation degree were higher than in the forest soil. The extractable phosphorus content, lower in forest soil, remained quite stable in pasture soils, but it could become a limiting factor for the maintenance of Guinea grass. Results indicated that pasture degradation does not seem to be directly related to the modification of the chemical features of soils. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
During the building of a hydroelectrical power plant at Ilha Solteira in the Parana River (Brazil), materials of a highly weathered soil Oxisol were extracted from a depth between 5 and 8 m for engineering works. This resulted in an abandoned depression area. The topsoil was not salvaged and the open pit was not backfilled, and as result vegetation hardly or not at all recovered. on the residual saprolite materials, an experimental field was established to assess different soil rehabilitation treatments. Field experiments were initiated in 1992. After soil tillage, two different crops and three different liming strategies were compared, giving six combinations. In addition, two uncropped control treatments, tilled and no-tilled, were established so that a total of eight treatments were assessed. The experimental design consisted of four randomized experimental blocks, which included a total of 32 plots with a plot area of 100 m(2). This experiment was used to study the effectiveness of the soil-reclamation treatments after a 9-year period. Soil samples were taken at three different depths (0-10, 10-20, and 20-40 cm), and they were analyzed routinely for pH, organic-matter content, and cation exchange capacity (CEC). Revegetation of the abandoned saprolite material increased soil organic-matter content and cation exchange capacity (CEC), and to some extent small differences between treatments were evidenced. Exchangeable calcium (Ca) and magnesium (Mg) recovered faster than organic-matter content. A significant linear relationship was found between organic-matter content and CEC, suggesting continued addition of organic material will further approach the value of these parameters to those levels corresponding to natural soils under "Cerrado" vegetation.