992 resultados para Topographical surveying.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metglas 2826 MB having a nominal composition of Fe40Ni38Mo4B18 is an excellent soft magnetic material and finds application in sensors and memory heads. However, the thin-film forms of Fe40Ni38Mo4B18 are seldom studied, although they are important in micro-electro-mechanical systems/nano-electromechanical systems devices. The stoichiometry of the film plays a vital role in determining the structural and magnetic properties of Fe40Ni38Mo4B18 thin films: retaining the composition in thin films is a challenge. Thin films of 52 nm thickness were fabricated by RF sputtering technique on silicon substrate from a target of nominal composition of Fe40Ni38Mo4B18. The films were annealed at temperatures of 400 °C and 600 °C. The micro-structural studies of films using glancing x-ray diffractometer (GXRD) and transmission electron microscope (TEM) revealed that pristine films are crystalline with (FeNiMo)23B6 phase. Atomic force microscope (AFM) images were subjected to power spectral density analysis to understand the probable surface evolution mechanism during sputtering and annealing. X-ray photoelectron spectroscopy (XPS) was employed to determine the film composition. The sluggish growth of crystallites with annealing is attributed to the presence of molybdenum in the thin film. The observed changes in magnetic properties were correlated with annealing induced structural, compositional and morphological changes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces the findings of a recent study on the use of information technology (IT) among the quantity surveying (QS) organisations in Hong Kong. The study was conducted through a structured questionnaire survey among 18 QS organisations registered in Hong Kong, representing around 53% of the total number of organisations in the profession. The data set generated from this study provided rich information about what information technology the QS profession used, what the perceived benefits and barriers experienced by the users in the industry were. The survey concluded that although IT had been widely used in QS organisations in Hong Kong, it is mainly used to support various individual tasks of the QS services at a basic level, rather than to streamline the production of QS services as a whole through automation. Most of the respondents agreed that IT plays an important role in the QS profession but they had not fully taken advantage of IT to improve their competitive edge in the market. They usually adopted a more passive “wait and see” approach. In addition, very few QS organisations in Hong Kong have a comprehensive policy in promoting the use of IT within the organisations. It is recommended that the QS profession must recognise the importance of IT and take appropriate actions to meet the challenges of ever-changing and competitive market place.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to establish and illustrate the levels of awareness of work-life balance policies within the surveying profession in Australia and New Zealand. The culture and characteristics of the Australian and New Zealand work force are to be identified. The key aspects included in work-life balance policies are to be illustrated and the perceived benefits for the surveying profession are to be noted. The paper seeks to posit that it is vital to comprehend the levels of awareness of work-life balance issues within the surveying profession first, so that benchmarking may occur over time within the profession and second, that comparisons may be drawn with other professions.
Design/methodology/approach – There is a growing body of research into work-life balance and the built environment professions. Using a questionnaire survey of the whole RICS qualified surveying profession in Australia and New Zealand, this paper identifies the awareness of work-life balance benefits within the surveying profession.
Findings – This research provides evidence that awareness of the issues and options is unevenly spread amongst professional surveyors in the region. With shortages of professionals and an active economy the pressures on existing employees looks set to rise and therefore this is an area which needs to be benchmarked and revisited with a view to adopting best practice throughout the sector. The implications are that employers ignore work-life balance issues at their peril.
Practical implications – There is much to be learned from an increased understanding of work-life balance issues for professionals in the surveying discipline. The consequences of an imbalance between work and personal or family life is emotional exhaustion, cynicism and burnout. The consequences for employers or surveying firms are reduced effectiveness and profitability and increased employee turnover or churn.
Originality/value
– Leading on from Ellison's UK surveying profession study and Lingard and Francis's Australian civil engineering and construction industry studies, this paper seeks to raise awareness of the benefits of adopting work-life balance policies within surveying firms and to establish benchmarks of awareness within the Australian and New Zealand surveying profession.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This paper seeks to present the second part of research funded by the RICS Education Trust to investigate the impact of the 2001 education reforms on Building Surveying. The first part of the research involved the collection of data from university course leaders.

Design/methodology/approach: This research involved the collection of data from large national, mainly London-based, employers of building surveyors at a focus group meeting.

Findings: The paper finds that issues of concern to these employers include the extent of construction technology knowledge of graduates, the delivery of contract administration, the placement year, post-graduate conversion courses and the high referral rate for the Assessment of Professional Competence (APC). Recommendations include advice to universities on the design of building surveying undergraduate and conversion courses, a call for further research on the high APC referral rate, and greater liaison between industry and universities.

Research limitations/implications
: The main limitation of the research is that the employers from whom data were collected were mainly large, national firms. Further research would be required to elicit the views of smaller regional organisations.

Practical implications: Both parts of this RICS Education Trust funded research provides a foundation for the Building Surveying Faculty of the RICS to complete their review of the education and training of building surveyors.

Originality/value: The research provides useful data on the impact of RICS education reform on building surveying, but mainly large, national firms.