928 resultados para Topic segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an information theoretic framework for image segmentation is presented. This approach is based on the information channel that goes from the image intensity histogram to the regions of the partitioned image. It allows us to define a new family of segmentation methods which maximize the mutual information of the channel. Firstly, a greedy top-down algorithm which partitions an image into homogeneous regions is introduced. Secondly, a histogram quantization algorithm which clusters color bins in a greedy bottom-up way is defined. Finally, the resulting regions in the partitioning algorithm can optionally be merged using the quantized histogram

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Objectif: l'observation des variations de volume de la matière grise (MG), de la matière blanche (MB), et du liquide céphalo-rachidien (LCR) est particulièrement utile dans l'étude de nombreux processus physiopathologiques, la mesure quantitative 'in vivo' de ces volumes présente un intérêt considérable tant en recherche qu'en pratique clinique. Cette étude présente et valide une méthode de segmentation automatique du cerveau avec mesure des volumes de MG et MB sur des images de résonance magnétique. Matériel et Méthode: nous utilisons un algorithme génétique automatique pour segmenter le cerveau en MG, MB et LCR à partir d'images tri-dimensionnelles de résonance magnétique en pondération Ti. Une étude morphométrique a été conduite sur 136 sujets hommes et femmes de 15 à 74 ans. L'algorithme a ensuite été validé par 5 approches différentes: I. Comparaison de mesures de volume sur un cerveau de cadavre par méthode automatique et par mesure de déplacement d'eau selon la méthode d'Archimède. 2. Comparaison de mesures surfaces sur des images bidimensionnelles segmentées soit par un traçage manuel soit par la méthode automatique. 3. Evaluation de la fiabilité de la segmentation par acquisitions et segmentations itératives du même cerveau. 4. Les volumes de MG, MB et LCR ont été utilisés pour une étude du vieillissement normal de la population. 5. Comparaison avec les données existantes de la littérature. Résultats: nous avons pu observer une variation de la mesure de 4.17% supplémentaire entre le volume d'un cerveau de cadavre mesuré par la méthode d'Archimède, en majeure partie due à la persistance de tissus après dissection_ La comparaison des méthodes de comptage manuel de surface avec la méthode automatique n'a pas montré de variation significative. L'épreuve du repositionnement du même sujet à diverses reprises montre une très bonne fiabilité avec une déviation standard de 0.46% pour la MG, 1.02% pour la MB et 3.59% pour le LCR, soit 0.19% pour le volume intracrânien total (VICT). L'étude morphométrique corrobore les résultats des études anatomiques et radiologiques existantes. Conclusion: la segmentation du cerveau par un algorithme génétique permet une mesure 100% automatique, fiable et rapide des volumes cérébraux in vivo chez l'individu normal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a joint effort between five institutionsthat introduces several novel similarity measures andcombines them to carry out a multimodal segmentationevaluation. The new similarity measures proposed arebased on the location and the intensity values of themisclassified voxels as well as on the connectivity andthe boundaries of the segmented data. We showexperimentally that the combination of these measuresimprove the quality of the evaluation. The study that weshow here has been carried out using four differentsegmentation methods from four different labs applied toa MRI simulated dataset of the brain. We claim that ournew measures improve the robustness of the evaluation andprovides better understanding about the differencebetween segmentation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Andalusian Public Health System Virtual Library (Biblioteca Virtual del Sistema Sanitario Público de Andalucía, BV-SSPA) provides access to health information resources and services to healthcare professionals through its Website. This virtual environment demands higher users’ knowledge in order to satisfy of the need of information of our users, as digital natives as digital immigrants, improving at the same time the communication with all of them. 1. To collect clients' views and expectations according to their nature of digital natives and immigrants. 2. To know our online reputation. A Collecting User Expectation Questionnaire will be built, taking into account the segmentation of the BV-SSPA users’ professional groups of the Andalusian Public Health System. A pilot test will be run to check the survey dimensions and items about practices, attitudes and knowledge of our users. Two Quality Function Deployment (QFD) matrices will enable the BV-SSPA services to be targeted to our digital natives or digital immigrants, according to their nature, finding the best way to satisfy their information needs. We provide feedback on BV-SSPA: users can have the opportunity to post feedback about the site via the 'Contact us' section and comment about their experience. And Web 2.0 is a shop window, providing the opportunity to show the comments; and through time, our online reputation will be built, but the BV-SSPA must manage its own personal branding. Web 2.0 tools are a driver of improvement, because they provide a key source of insight into people's attitudes. Besides, the BV-SSPA digital identity will be analyzed through indicators like major search engine referrals breakdown, top referring sites (non search engines), or top search engine referral phrases, among others. Definition of digital native and digital immigrant profiles of the BV-SSPA, and their difference, will be explained by their expectations. The design of the two QFD matrices will illustrate in just one graph the requirements of both groups for tackling digital abilities and inequalities. The BV-SSPA could deliver information and services through alternative channels. On the other hand, we are developing a strategy to identify, to measure and to manage a digital identity through communication with the user and to find out our online reputation. With the use of different tools from quantitative and qualitative methodology, and the opportunities offered by Web 2.0 tools, the BV-SSPA will know the expectations of their users as a first step to satisfy their necessities. Personalization is pivotal to the success of the Site, delivering tailored content to individuals based on their recorded preferences. The valuable user research can be used during new product development and redesign. Besides positive interaction let us build trust, show authenticity, and foster loyalty: we improve with effort, communication and show.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully-automated 3D image analysis method is proposed to segment lung nodules in HRCT. A specific gray-level mathematical morphology operator, the SMDC-connection cost, acting in the 3D space of the thorax volume is defined in order to discriminate lung nodules from other dense (vascular) structures. Applied to clinical data concerning patients with pulmonary carcinoma, the proposed method detects isolated, juxtavascular and peripheral nodules with sizes ranging from 2 to 20 mm diameter. The segmentation accuracy was objectively evaluated on real and simulated nodules. The method showed a sensitivity and a specificity ranging from 85% to 97% and from 90% to 98%, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel technique for estimating the rank of the trajectory matrix in the local subspace affinity (LSA) motion segmentation framework is presented. This new rank estimation is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built with LSA. The result is an enhanced model selection technique for trajectory matrix rank estimation by which it is possible to automate LSA, without requiring any a priori knowledge, and to improve the final segmentation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a novel rank estimation technique for trajectories motion segmentation within the Local Subspace Affinity (LSA) framework is presented. This technique, called Enhanced Model Selection (EMS), is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built by LSA. The results on synthetic and real data show that without any a priori knowledge, EMS automatically provides an accurate and robust rank estimation, improving the accuracy of the final motion segmentation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: We are interested in the numerical simulation of the anastomotic region comprised between outflow canula of LVAD and the aorta. Segmenta¬tion, geometry reconstruction and grid generation from patient-specific data remain an issue because of the variable quality of DICOM images, in particular CT-scan (e.g. metallic noise of the device, non-aortic contrast phase). We pro¬pose a general framework to overcome this problem and create suitable grids for numerical simulations.Methods: Preliminary treatment of images is performed by reducing the level window and enhancing the contrast of the greyscale image using contrast-limited adaptive histogram equalization. A gradient anisotropic diffusion filter is applied to reduce the noise. Then, watershed segmentation algorithms and mathematical morphology filters allow reconstructing the patient geometry. This is done using the InsightToolKit library (www.itk.org). Finally the Vascular Model¬ing ToolKit (www.vmtk.org) and gmsh (www.geuz.org/gmsh) are used to create the meshes for the fluid (blood) and structure (arterial wall, outflow canula) and to a priori identify the boundary layers. The method is tested on five different patients with left ventricular assistance and who underwent a CT-scan exam.Results: This method produced good results in four patients. The anastomosis area is recovered and the generated grids are suitable for numerical simulations. In one patient the method failed to produce a good segmentation because of the small dimension of the aortic arch with respect to the image resolution.Conclusions: The described framework allows the use of data that could not be otherwise segmented by standard automatic segmentation tools. In particular the computational grids that have been generated are suitable for simulations that take into account fluid-structure interactions. Finally the presented method features a good reproducibility and fast application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluation of segmentation methods is a crucial aspect in image processing, especially in the medical imaging field, where small differences between segmented regions in the anatomy can be of paramount importance. Usually, segmentation evaluation is based on a measure that depends on the number of segmented voxels inside and outside of some reference regions that are called gold standards. Although some other measures have been also used, in this work we propose a set of new similarity measures, based on different features, such as the location and intensity values of the misclassified voxels, and the connectivity and the boundaries of the segmented data. Using the multidimensional information provided by these measures, we propose a new evaluation method whose results are visualized applying a Principal Component Analysis of the data, obtaining a simplified graphical method to compare different segmentation results. We have carried out an intensive study using several classic segmentation methods applied to a set of MRI simulated data of the brain with several noise and RF inhomogeneity levels, and also to real data, showing that the new measures proposed here and the results that we have obtained from the multidimensional evaluation, improve the robustness of the evaluation and provides better understanding about the difference between segmentation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a segmentation method for fetal brain tissuesof T2w MR images, based on the well known ExpectationMaximization Markov Random Field (EM- MRF) scheme. Ourmain contribution is an intensity model composed of 7Gaussian distribution designed to deal with the largeintensity variability of fetal brain tissues. The secondmain contribution is a 3-steps MRF model that introducesboth local spatial and anatomical priors given by acortical distance map. Preliminary results on 4 subjectsare presented and evaluated in comparison to manualsegmentations showing that our methodology cansuccessfully be applied to such data, dealing with largeintensity variability within brain tissues and partialvolume (PV).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In medical imaging, merging automated segmentations obtained from multiple atlases has become a standard practice for improving the accuracy. In this letter, we propose two new fusion methods: "Global Weighted Shape-Based Averaging" (GWSBA) and "Local Weighted Shape-Based Averaging" (LWSBA). These methods extend the well known Shape-Based Averaging (SBA) by additionally incorporating the similarity information between the reference (i.e., atlas) images and the target image to be segmented. We also propose a new spatially-varying similarity-weighted neighborhood prior model, and an edge-preserving smoothness term that can be used with many of the existing fusion methods. We first present our new Markov Random Field (MRF) based fusion framework that models the above mentioned information. The proposed methods are evaluated in the context of segmentation of lymph nodes in the head and neck 3D CT images, and they resulted in more accurate segmentations compared to the existing SBA.