79 resultados para Timoshenko
Resumo:
We present results on the system size dependence of high transverse momentum di-hadron correlations at root s(NN) = 200 GeV as measured by STAR at RHIC. Measurements in d + Au, Cu + Cu and Au + Au collisions reveal similar jet-like near-side correlation yields (correlations at small angular separation Delta phi similar to 0, Delta eta similar to 0) for all systems and centralities. Previous measurements have shown Chat the away-side (Delta phi similar to pi) yield is suppressed in heavy-ion collisions. We present measurements of the away-side Suppression as a function of transverse momentum and centrality in Cu + Cu and Au + Au collisions. The suppression is found to be similar in Cu + Cu and An + An collisions at a similar number of participants. The results are compared to theoretical calculations based on the patron quenching model and the modified fragmentation model. The observed differences between data and theory indicate that the correlated yields presented here will further constrain dynamic energy loss models and provide information about the dynamic density profile in heavy-ion collisions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present the multiplicity and pseudorapidity distributions of photons produced in Au + Au and Cu + Cu collisions at root(s)NN = 62.4 and 200 GeV. The photons are measured in the region -3.7 < eta < -2.3 using the photon Multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of (lie collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for An + Au and Cu + Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for root(s)NN = 62.4 and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of eta-Y(beam), are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We study the beam-energy and system-size dependence of phi meson production (using the hadronic decay mode phi -> K(+) K(-)) by comparing the new results from Cu + Cu collisions and previously reported Au + Au collisions at root s(NN) = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented in this Letter are from mid-rapidity (vertical bar y vertical bar < 0.5) for 0.4 < p(T) < 5 GeV/c. At a given beam energy, the transverse momentum distributions for phi mesons are observed to be similar in yield and shape for Cu + Cu and Au + Au colliding systems with similar average numbers of participating nucleons. The phi meson yields in nucleus-nucleus collisions, normalized by the average number of participating nucleons, are found to be enhanced relative to those from p + p collisions. The enhancement for phi mesons lies between strange hadrons having net strangeness = 1 (K(-) and <(A)over bar>) and net strangeness = 2 (Xi). The enhancement for phi mesons is observed to be higher at root s(NN) = 200 GeV compared to 62.4 GeV. These observations for the produced phi(s (s) over bar) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The dynamics of the AFM-atomic force microscope follows a model based in a Timoshenko cantilever beam with a tip attached at the free end and acting with the surface of a sample. General boundary conditions arise when the tip is either in contact or non-contact with the surface. The governing equations are given in matrix conservative form subject to localized loads. The eigenanalysis is done with a fundamental matrix response of a damped second-order matrix differential equation. Forced responses are found by using a Galerkin approximation of the matrix impulse response. Simulations results with harmonic and pulse forcing show the filtering character and the effects of the tip-sample interaction at the end of the beam. © 2012 American Institute of Physics.
Resumo:
Thin walled cylindrical shells are widely used in many areas of industry, including civil, mechanical, nuclear, marine, petroleum and aerospace engineering. The wide application of thin cylindrical shells and the importance of instability phenomenon are the motivation basis to this study, since these factors have a great importance in engineering projects. It is presented a detailed study about the instability of cylindrical shells based on theoretical calculation, which results are compared with finite elements method calculation. The loading and boundary conditions analyzed are based on the most common types verified in real engineering projects and refer respectively to lateral (external) pressure and cylinders with simply supported edges. The calculation based on the finite elements method was executed with ANSYS 13.0 software. The results obtained with this calculation are in good agreement with the analytical theory presented in the technical note NACA No 1341 (BATDORF, 1947) considering a wide range of applicability. On the other hand, the analytical method presented in the book Theory of Elastic Stability (TIMOSHENKO; GERE, 1936) has a very restrict applicability and has presented considerable deviations in a great sort of the analyzed cases
Resumo:
The Bernoulli's model for vibration of beams is often used to make predictions of bending modulus of elasticity when using dynamic tests. However this model ignores the rotary inertia and shear. Such effects can be added to the solution of Bernoulli's equation by means of the correction proposed by Goens (1931) or by Timoshenko (1953). But to apply these corrections it is necessary to know the E/G ratio of the material. The objective of this paper is the determination of the E/G ratio of wood logs by adjusting the analytical solution of the Timoshenko beam model to the dynamic testing data of 20 Eucalyptus citriodora logs. The dynamic testing was performed with the logs in free-free suspension. To find the stiffness properties of the logs, the residue minimization was carried out using the Genetic Algorithm (GA). From the result analysis one can reasonably assume E/G = 20 for wood logs.
Resumo:
The aim of this study was to develop a model capable to capture the different contributions which characterize the nonlinear behaviour of reinforced concrete structures. In particular, especially for non slender structures, the contribution to the nonlinear deformation due to bending may be not sufficient to determine the structural response. Two different models characterized by a fibre beam-column element are here proposed. These models can reproduce the flexure-shear interaction in the nonlinear range, with the purpose to improve the analysis in shear-critical structures. The first element discussed is based on flexibility formulation which is associated with the Modified Compression Field Theory as material constitutive law. The other model described in this thesis is based on a three-field variational formulation which is associated with a 3D generalized plastic-damage model as constitutive relationship. The first model proposed in this thesis was developed trying to combine a fibre beamcolumn element based on the flexibility formulation with the MCFT theory as constitutive relationship. The flexibility formulation, in fact, seems to be particularly effective for analysis in the nonlinear field. Just the coupling between the fibre element to model the structure and the shear panel to model the individual fibres allows to describe the nonlinear response associated to flexure and shear, and especially their interaction in the nonlinear field. The model was implemented in an original matlab® computer code, for describing the response of generic structures. The simulations carried out allowed to verify the field of working of the model. Comparisons with available experimental results related to reinforced concrete shears wall were performed in order to validate the model. These results are characterized by the peculiarity of distinguishing the different contributions due to flexure and shear separately. The presented simulations were carried out, in particular, for monotonic loading. The model was tested also through numerical comparisons with other computer programs. Finally it was applied for performing a numerical study on the influence of the nonlinear shear response for non slender reinforced concrete (RC) members. Another approach to the problem has been studied during a period of research at the University of California Berkeley. The beam formulation follows the assumptions of the Timoshenko shear beam theory for the displacement field, and uses a three-field variational formulation in the derivation of the element response. A generalized plasticity model is implemented for structural steel and a 3D plastic-damage model is used for the simulation of concrete. The transverse normal stress is used to satisfy the transverse equilibrium equations of at each control section, this criterion is also used for the condensation of degrees of freedom from the 3D constitutive material to a beam element. In this thesis is presented the beam formulation and the constitutive relationships, different analysis and comparisons are still carrying out between the two model presented.
Resumo:
In this work, the Generalized Beam Theory (GBT) is used as the main tool to analyze the mechanics of thin-walled beams. After an introduction to the subject and a quick review of some of the most well-known approaches to describe the behaviour of thin-walled beams, a novel formulation of the GBT is presented. This formulation contains the classic shear-deformable GBT available in the literature and contributes an additional description of cross-section warping that is variable along the wall thickness besides along the wall midline. Shear deformation is introduced in such a way that the classical shear strain components of the Timoshenko beam theory are recovered exactly. According to the new kinematics proposed, a reviewed form of the cross-section analysis procedure is devised, based on a unique modal decomposition. Later, a procedure for a posteriori reconstruction of all the three-dimensional stress components in the finite element analysis of thin-walled beams using the GBT is presented. The reconstruction is simple and based on the use of three-dimensional equilibrium equations and of the RCP procedure. Finally, once the stress reconstruction procedure is presented, a study of several existing issues on the constitutive relations in the GBT is carried out. Specifically, a constitutive law based on mirroring the kinematic constraints of the GBT model into a specific stress field assumption is proposed. It is shown that this method is equally valid for isotropic and orthotropic beams and coincides with the conventional GBT approach available in the literature. Later on, an analogous procedure is presented for the case of laminated beams. Lastly, as a way to improve an inherently poor description of shear deformability in the GBT, the introduction of shear correction factors is proposed. Throughout this work, numerous examples are provided to determine the validity of all the proposed contributions to the field.
Resumo:
In Airbus GmbH (Hamburg) has been developed a new design of Rear Pressure Bulkhead (RPB) for the A320-family. The new model has been formed with vacuum forming technology. During this process the wrinkling phenomenon occurs. In this thesis is described an analytical model for prediction of wrinkling based on the energetic method of Timoshenko. Large deflection theory has been used for analyze two cases of study: a simply supported circular thin plate stamped by a spherical punch and a simply supported circular thin plate formed with vacuum forming technique. If the edges are free to displace radially, thin plates will develop radial wrinkles near the edge at a central deflection approximately equal to four plate thicknesses w0/ℎ≈4 if they’re stamped by a spherical punch and w0/ℎ≈3 if they’re formed with vacuum forming technique. Initially, there are four symmetrical wrinkles, but the number increases if the central deflection is increased. By using experimental results, the “Snaptrhough” phenomenon is described.
Resumo:
The accuracy of simulating the aerodynamics and structural properties of the blades is crucial in the wind-turbine technology. Hence the models used to implement these features need to be very precise and their level of detailing needs to be high. With the variety of blade designs being developed the models should be versatile enough to adapt to the changes required by every design. We are going to implement a combination of numerical models which are associated with the structural and the aerodynamic part of the simulation using the computational power of a parallel HPC cluster. The structural part models the heterogeneous internal structure of the beam based on a novel implementation of the Generalized Timoshenko Beam Model Technique.. Using this technique the 3-D structure of the blade is reduced into a 1-D beam which is asymptotically equivalent. This reduces the computational cost of the model without compromising its accuracy. This structural model interacts with the Flow model which is a modified version of the Blade Element Momentum Theory. The modified version of the BEM accounts for the large deflections of the blade and also considers the pre-defined structure of the blade. The coning, sweeping of the blade, tilt of the nacelle and the twist of the sections along the blade length are all computed by the model which aren’t considered in the classical BEM theory. Each of these two models provides feedback to the other and the interactive computations lead to more accurate outputs. We successfully implemented the computational models to analyze and simulate the structural and aerodynamic aspects of the blades. The interactive nature of these models and their ability to recompute data using the feedback from each other makes this code more efficient than the commercial codes available. In this thesis we start off with the verification of these models by testing it on the well-known benchmark blade for the NREL-5MW Reference Wind Turbine, an alternative fixed-speed stall-controlled blade design proposed by Delft University, and a novel alternative design that we proposed for a variable-speed stall-controlled turbine, which offers the potential for more uniform power control and improved annual energy production.. To optimize the power output of the stall-controlled blade we modify the existing designs and study their behavior using the aforementioned aero elastic model.
Resumo:
This paper presents some of the modelling criteria that have been used for the study of pyrotechnic shock propagation in the A5 VEB Structure, as well as the main conclusions from a mathematical model of the axymmetric effects in it. The separation of the lower stage of the ARIANE 5 Vehicle Equipment Bay (VEB)Structure is to be done using a pyrotechnic device. The wave propagation effects produced by the explosion have been analyzed with a computer program using as shape functions the analytical solution to the frequency response of a Timoshenko-Rayleigh beams and shells in that way the discretization can have elements as large as possible, depending on the material properties and boundary conditions. Moreover an enormous amount of possibilities in the treatment of concentrated masses, springs and dashpots, either with respect to a fixed reference or between nodes, is open for translational as well as rotational degrees of freedom.
Resumo:
This paper presents a simplified finite element (FE) methodology for solving accurately beam models with (Timoshenko) and without (Bernoulli-Euler) shear deformation. Special emphasis is made on showing how it is possible to obtain the exact solution on the nodes and a good accuracy inside the element. The proposed simplifying concept, denominated as the equivalent distributed load (EDL) of any order, is based on the use of Legendre orthogonal polynomials to approximate the original or acting load for computing the results between the nodes. The 1-span beam examples show that this is a promising procedure that allows the aim of using either one FE and an EDL of slightly higher order or by using an slightly larger number of FEs leaving the EDL in the lowest possible order assumed by definition to be equal to 4 independently of how irregular the beam is loaded.
Resumo:
Se estudia el modelado de la estructura en tres ámbitos: los modelos de masas concentradas, los modelos contínuos y la discretización consistente de modelos contínuos. Dentro del apartado de los modelos de masas concentradas, se hace referencia a la viga de Timoshenko, el cilindro de sección indeformable, el modelado de edificios como voladizo equivalente y las estructuras reticulares. Seguidamente, en lo relativo a los modelos contínuos, se profundiza en la influencia de la incercia de rotación y la deformación tangencial. Para terminar, y respecto a la discretización consistente de modelos contínuos, el autor se detiene en el método de Rayleigh-Ritz y la discretización de Kantorovitch; el método de los elementos finitos (F.E.M.) y el método de los elementos de contorno (B.I.E.M.).
Resumo:
Esta obra recopila un conjunto de problemas de cálculo clásico de estructuras, con el objetivo de ayudar al alumno que se inicia en el Cálculo de Estructuras a conocer y comprender el fenómeno estructural, mediante técnicas sencillas, que no exigen recursos informáticos importantes. De esta forma estará en condiciones no solo de asimilar posteriormente las posibilidades del cálculo matricial de estructuras, sino también, de comprobar a veces los resultados que muchos creen mágicos e infalibles del computador. El origen de estos problemas que se presentan es muy vario, algunos se remontan a mis años lejanos de estudiante, otros al libro clásico de ”Teoría de las Estructuras” de Timoshenko junto con otros que son cosecha de los autores y que se han propuesto en los distintos examenes de la Escuela.
Resumo:
This article presents a new and computationally efficient method of analysis of a railway track modelled as a continuous beam of 2N spans supported by elastic vertical springs. The main feature of this method is its important reduction in computational effort with respect to standard matrix methods of structural analysis. In this article, the whole structure is considered to be a repetition of a single one. The analysis presented is applied to a simple railway track model, i.e. to a repetitive beam supported on vertical springs (sleepers). The proposed method of analysis is based on the general theory of spatially periodic structures. The main feature of this theory is the possibility to apply Discrete Fourier Transform (DFT) in order to reduce a large system of q(2N + 1) linear stiffness equilibrium equations to a set of 2N + 1 uncoupled systems of q equations each. In this way, a dramatic reduction of the computational effort of solving the large system of equations is achieved. This fact is particularly important in the analysis of railway track structures, in which N is a very large number (around several thousands), and q = 2, the vertical displacement and rotation, is very small. The proposed method allows us to easily obtain the exact solution given by Samartín [1], i.e. the continuous beam railway track response. The comparison between the proposed method and other methods of analysis of railway tracks, such as Lorente de Nó and Zimmermann-Timoshenko, clearly shows the accuracy of the obtained results for the proposed method, even for low values of N. In addition, identical results between the proposed and the Lorente methods have been found, although the proposed method seems to be of simpler application and computationally more efficient than the Lorente one. Small but significative differences occur between these two methods and the one developed by Zimmermann-Timoshenko. This article also presents a detailed sensitivity analysis of the vertical displacement of the sleepers. Although standard matrix methods of structural analysis can handle this railway model, one of the objectives of this article is to show the efficiency of DFT method with respect to standard matrix structural analysis. A comparative analysis between standard matrix structural analysis and the proposed method (DFT), in terms of computational time, input, output and also software programming, will be carried out. Finally, a URL link to a MatLab computer program list, based on the proposed method, is given