981 resultados para Tidal Groundwater


Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION. Neurally Adjusted Ventilatory Assist (NAVA) is a new ventilatory mode in which ventilator settings are adjusted based on the electrical activity detected in the diaphragm (Eadi). This mode offers significant advantages in mechanical ventilation over standard pressure support (PS) modes, since ventilator input is determined directly from patient ventilatory demand. Therefore, it is expected that tidal volume (Vt) under NAVA would show better correlation with Eadi compared with PS, and exhibit greater variability due to the variability in the Eadi input to the ventilator. OBJECTIVES. To compare tidal volume variability in PS and NAVA ventilation modes, and its correlation with patient ventilatory demand (as characterized by maximum Eadi). METHODS. Acomparative study of patient-ventilator interaction was performed for 22 patients during standard PS with clinician determined ventilator settings; and NAVA, with NAVA gain set to ensure the same peak airway pressure as the total pressure obtained in PS. A 20 min continuous recording was performed in each ventilator mode. Respiratory rate, Vt, and Eadi were recorded. Tidal volume variance and Pearson correlation coefficient between Vt and Eadi were calculated for each patient. A periodogram was plotted for each ventilator mode and each patient, showing spectral power as a function of frequency to assess variability. RESULTS. Median, lower quartile and upper quartile values for Vt variance and Vt/Eadi correlation are shown in Table 1. The NAVA cohort exhibits substantially greater correlation and variance than the PS cohort. Power spectrums for Vt and Eadi are shown in Fig. 1 (PS and NAVA) for a typical patient. The enlarged section highlights how changes in Eadi are highly synchronized with NAVA ventilation, but less so for PS. CONCLUSIONS. There is greater variability in tidal volume and correlation between tidal volume and diaphragmatic electrical activity with NAVA compared to PS. These results are consistent with the improved patient-ventilator synchrony reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining groundwater flow paths of infiltrated river water is necessary for studying biochemical processes in the riparian zone, but their characterization is complicated by strong temporal and spatial heterogeneity. We investigated to what extent repeat 3D surface electrical resistance tomography (ERT) can be used to monitor transport of a salt-tracer plume under close to natural gradient conditions. The aim is to estimate groundwater flow velocities and pathways at a site located within a riparian groundwater system adjacent to the perialpine Thur River in northeastern Switzerland. Our ERT time-lapse images provide constraints on the plume's shape, flow direction, and velocity. These images allow the movement of the plume to be followed for 35 m. Although the hydraulic gradient is only 1.43 parts per thousand, the ERT time-lapse images demonstrate that the plume's center of mass and its front propagate with velocities of 2x10(-4) m/s and 5x10(-4) m/s, respectively. These velocities are compatible with groundwater resistivity monitoring data in two observation wells 5 m from the injection well. Five additional sensors in the 5-30 m distance range did not detect the plume. Comparison of the ERT time-lapse images with a groundwater transport model and time-lapse inversions of synthetic ERT data indicate that the movement of the plume can be described for the first 6 h after injection by a uniform transport model. Subsurface heterogeneity causes a change of the plume's direction and velocity at later times. Our results demonstrate the effectiveness of using time-lapse 3D surface ERT to monitor flow pathways in a challenging perialpine environment over larger scales than is practically possible with crosshole 3D ERT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A luminescent bacterial biosensor was used to quantify bioavailable arsenic in artificial groundwater. Its light production above the background emission was proportional to the arsenite concentration in the toxicologically relevant range of 0 to 0.5 mu M. Effects of the inorganic solutes phosphate, Fe(II) and silicate on the biosensor signal were studied. Phosphate at a concentration of 0.25 g L-1 phosphate slightly stimulated the light emission, but much less than toxicologically relevant concentrations of the much stronger inducer arsenite. No effect of phosphate was oberved in the presence of arsenite. Freshly prepared sodium silicate solution at a concentration of 10 g L-1 Si reduced the arsenite-induced light production by roughly 37%, which can be explained by transient polymerization leading to sequestration of some arsenic. After three days of incubation, silicate did not have this effect anymore, probably because depolymerization occurred. In the presence of 0.4 g L-1 Fe(II), the arsenite-induced light emission was reduced by up to 90%, probably due to iron oxidation followed by arsenite adsorption on the less soluble Fe(III) possibly along with some oxidation to the stronger adsorbing As(V). Addition of 100 mu M EDTA was capable of releasing all arsenic from the precipitate and to transform it into the biologically measurable, dissolved state. The biosensor also proved valuable for monitoring the effectiveness of an arsenic removal procedure based on water filtration through a mixture of sand and iron granules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION. Neurally Adjusted Ventilatory Assist (NAVA) is an assisted ventilatorymode in which the ventilator is driven by the electrical activity of the diaphragm (Eadi).NAVAimproves patient-ventilator synchrony [1] but little is known about how to set the NAVA gaini.e., how to choose the ratio between Eadi and delivered pressure. The aim of the present studywas to assess the relationship between Eadi and tidal volume (Vt) at various NAVA gainsettings and to evaluate whether modifying the gain influenced this relationship in non-invasivelyventilated (NIV) patients.METHODS. Prospective interventional study comparing 3 values of NAVA gain during NIV(20 min each). NAVA100 was set by the clinician according to the manufacturer's recommendations.In NAVA50 and NAVA150 the gain was set as -50% and +50% of NAVA100gain respectively. Vt and maximal Eadi value (Eadi max) were recorded. The ratio Vt/Eadi wasthen assessed for each breath. 5-95% range (range 90) of Vt/Eadi was calculated for eachpatient at each NAVA gain setting. Vt/Eadi ratio has the advantage to give an objectiveassessment Vt/Eadi max relationship independently from the nature of this relationship. Asmaller Range90 indicates a better matching of Vt to Eadi max.RESULTS. 12 patients were included, 5 had obstructive pulmonary disease and 2 mixedobstructive and restrictive disease. For NAVA100, the median [IQR] Range 90 was 32[19-87]. For NAVA150 Range 90 was 37 [20-95] and for NAVA50 Range 90 was 33 [16-92].That means that globally NAVA100 allowed a better match between Eadi max and Vt thanNAVA50 and 150. However, by patient, NAVA100 had the lowest Range 90 value for only 4patients (33%), NAVA150 for 2 (17%) and NAVA50 for 6 (50%) patients, indicating thatNAVA100 was not the best NAVA gain for minimizing Range 90 in every patients.Comparing the lowest Range 90 value to the next lowest for each patient, showed that 3 patientshad differences of less than 10% (one each for NAVA50, NAVA100 and NAVA150). Theremainder had differences from 17 to 24%, indicating that most patients (9/12 or 75%) had aclear better match between Eadi and Vt for one specific NAVA gain.CONCLUSIONS. Different NAVA gains yielded markedly different ability to match Vt toEadi max. This approach could be a new way to determine optimalNAVAgain for each patientbut require further investigations.REFERENCE. Piquilloud L, et al. Intensive Care Med 2011;37:263-71.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A test kit based on living, lyophilized bacterial bioreporters emitting bioluminescence as a response to arsenite and arsenate was applied during a field campaign in six villages across Bangladesh. Bioreporter field measurements of arsenic in groundwater from tube wells were in satisfying agreement with the results of spectroscopic analyses of the same samples conducted in the lab. The practicability of the bioreporter test in terms of logistics and material requirements, suitability for high sample throughput, and waste disposal was much better than that of two commercial chemical test kits that were included as references. The campaigns furthermore demonstrated large local heterogeneity of arsenic in groundwater, underscoring the use of well switching as an effective remedy to avoid high arsenic exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION. Patient-ventilator asynchrony is a frequent issue in non invasivemechanical ventilation (NIV) and leaks at the patient-mask interface play a major role in itspathogenesis. NIV algorithms alleviate the deleterious impact of leaks and improve patient-ventilator interaction. Neurally adusted ventilatory assist (NAVA), a neurally triggered modethat avoids interferences between leaks and the usual pneumatic trigger, could further improvepatient-ventilator interaction in NIV patients.OBJECTIVES. To evaluate the feasibility ofNAVAin patients receiving a prophylactic postextubationNIV and to compare the respective impact ofPSVandNAVAwith and withoutNIValgorithm on patient-ventilator interaction.METHODS. Prospective study conducted in 16 beds adult critical care unit (ICU) in a tertiaryuniversity hospital. Over a 2 months period, were included 17 adult medical ICU patientsextubated for less than 2 h and in whom a prophylactic post-extubation NIV was indicated.Patients were randomly mechanically ventilated for 10 min with: PSV without NIV algorithm(PSV-NIV-), PSV with NIV algorithm (PSV-NIV+),NAVAwithout NIV algorithm (NAVANIV-)and NAVA with NIV algorithm (NAVA-NIV+). Breathing pattern descriptors, diaphragmelectrical activity, leaks volume, inspiratory trigger delay (Tdinsp), inspiratory time inexcess (Tiexcess) and the five main asynchronies were quantified. Asynchrony index (AI) andasynchrony index influenced by leaks (AIleaks) were computed.RESULTS. Peak inspiratory pressure and diaphragm electrical activity were similar in thefour conditions. With both PSV and NAVA, NIV algorithm significantly reduced the level ofleak (p\0.01). Tdinsp was not affected by NIV algorithm but was shorter in NAVA than inPSV (p\0.01). Tiexcess was shorter in NAVA and PSV-NIV+ than in PSV-NIV- (p\0.05).The prevalence of double triggering was significantly lower in PSV-NIV+ than in NAVANIV+.As compared to PSV,NAVAsignificantly reduced the prevalence of premature cyclingand late cycling while NIV algorithm did not influenced premature cycling. AI was not affectedby NIV algorithm but was significantly lower in NAVA than in PSV (p\0.05). AIleaks wasquasi null with NAVA and significantly lower than in PSV (p\0.05).CONCLUSIONS. NAVA is feasible in patients receiving a post-extubation prophylacticNIV. NAVA and NIV improve patient-ventilator synchrony in different manners. NAVANIV+offers the best patient-ventilator interaction. Clinical studies are required to assess thepotential clinical benefit of NAVA in patients receiving NIV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water fact sheet for Iowa Department of Natural Resources and the Geological Bureau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deeply incised drainage networks are thought to be robust and not easily modified, and are commonly used as passive markers of horizontal strain. Yet, reorganizations (rearrangements) appear in the geologic record. We provide field evidence of the reorganization of a Miocene drainage network in response to strike-slip and vertical displacements in Guatemala. The drainage was deeply incised into a 50-km-wide orogen located along the North America-Caribbean plate boundary. It rearranged twice, first during the Late Miocene in response to transpressional uplift along the Polochic fault, and again in the Quaternary in response to transtensional uplift along secondary faults. The pattern of reorganization resembles that produced by the tectonic defeat of rivers that cross growing tectonic structures. Compilation of remote sensing data, field mapping, sediment provenance study, grain-size analysis and Ar(40)/Ar(39) dating from paleovalleys and their fill reveals that the classic mechanisms of river diversion, such as river avulsion over bedrock, or capture driven by surface runoff, are not sufficient to produce the observed diversions. The sites of diversion coincide spatially with limestone belts and reactivated fault zones, suggesting that solution-triggered or deformation-triggered permeability have helped breaching of interfluves. The diversions are also related temporally and spatially to the accumulation of sediment fills in the valleys, upstream of the rising structures. We infer that the breaching of the interfluves was achieved by headward erosion along tributaries fed by groundwater flow tracking from the valleys soon to be captured. Fault zones and limestone belts provided the pathways, and the aquifers occupying the valley fills provided the head pressure that enhanced groundwater circulation. The defeat of rivers crossing the rising structures results essentially from the tectonically enhanced activation of groundwater flow between catchments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This monthly report from the Iowa Department of Natural Resources is about the water quality management of Iowa's rivers, streams and lakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This monthly report from the Iowa Department of Natural Resources is about the water quality management of Iowa's rivers, streams and lakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To assess the suitability of a hot-wire anemometer infant monitoring system (Florian, Acutronic Medical Systems AG, Hirzel, Switzerland) for measuring flow and tidal volume (Vt) proximal to the endotracheal tube during high-frequency oscillatory ventilation. DESIGN: In vitro model study. SETTING: Respiratory research laboratory. SUBJECT: In vitro lung model simulating moderate to severe respiratory distress. INTERVENTION: The lung model was ventilated with a SensorMedics 3100A ventilator. Vt was recorded from the monitor display (Vt-disp) and compared with the gold standard (Vt-adiab), which was calculated using the adiabatic gas equation from pressure changes inside the model. MEASUREMENTS AND MAIN RESULTS: A range of Vt (1-10 mL), frequencies (5-15 Hz), pressure amplitudes (10-90 cm H2O), inspiratory times (30% to 50%), and Fio2 (0.21-1.0) was used. Accuracy was determined by using modified Bland-Altman plots (95% limits of agreement). An exponential decrease in Vt was observed with increasing oscillatory frequency. Mean DeltaVt-disp was 0.6 mL (limits of agreement, -1.0 to 2.1) with a linear frequency dependence. Mean DeltaVt-disp was -0.2 mL (limits of agreement, -0.5 to 0.1) with increasing pressure amplitude and -0.2 mL (limits of agreement, -0.3 to -0.1) with increasing inspiratory time. Humidity and heating did not affect error, whereas increasing Fio2 from 0.21 to 1.0 increased mean error by 6.3% (+/-2.5%). CONCLUSIONS: The Florian infant hot-wire flowmeter and monitoring system provides reliable measurements of Vt at the airway opening during high-frequency oscillatory ventilation when employed at frequencies of 8-13 Hz. The bedside application could improve monitoring of patients receiving high-frequency oscillatory ventilation, favor a better understanding of the physiologic consequences of different high-frequency oscillatory ventilation strategies, and therefore optimize treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

14C dating models are limited when considering recent groundwater for which the carbon isotopic signature of the total dissolved inorganic carbon (TDIC) is mainly acquired in the unsaturated zone. Reducing the uncertainties of dating thus implies a better identification of the processes controlling the carbon isotopic composition of the TDIC during groundwater recharge. Geochemical interactions between gas, water and carbonates in the unsaturated zone were investigated for two aquifers (the carbonate-free Fontainebleau sands and carbonate-bearing Astian sands, France) in order to identify the respective roles of CO2 and carbonates on the carbon isotopic signatures of the TDIC; this analysis is usually approached using open or closed system terms. Under fully open system conditions, the seasonality of the 13C values in the soil CO2 can lead to important uncertainties regarding the so-called "initial 14C activity" used in 14C correction models. In a carbonate-bearing unsaturated zone such as in the Astian aquifer, we show that an approach based on fully open or closed system conditions is not appropriate. Although the chemical saturation between water and calcite occurs rapidly within the first metre of the unsaturated zone, the carbon isotopic contents (δ13C) of the CO2 and the TDIC evolve downward, impacted by the dissolution-precipitation of the carbonates. In this study, we propose a numerical approach to describe this evolution. The δ13C and the A 14C (radiocarbon activity) of the TDIC at the base of the carbonate-hearing unsaturated zone depends on (i) the δ13C and the A 14C of the TDIC in the soil determined by the soil CO2, (ii) the water's residence time in the unsaturated zone and (iii) the carbonate precipitation-dissolution fluxes. In this type of situation, the carbonate δ13C-A 14C evolutions indicate the presence of secondary calcite and permit the calculation of its accretion flux, equal to ~ 4.5 ± 0.5 x 10-9 mol grock-1 yr-1. More generally, for other sites under temperate climate and with similar properties to the Astian sands site, this approach allows for a reliable determination of the carbon isotopic composition at the base of the unsaturated zone as the indispensable "input function" data of the carbon cycle into the aquifer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2007 Iowa General Assembly, recognizing the increased demand for water to support the growth of industries and municipalities, approved funding for the first year of a multi-year evaluation and modeling of Iowa’s major aquifers by the Iowa Department of Natural Resources. The task of conducting this evaluation and modeling was assigned to the Iowa Geological and Water Survey (IGWS). The first aquifer to be studied was the Lower Dakota aquifer in a sixteen county area of northwest Iowa.