950 resultados para Three-Dimensional Imaging


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional coronary magnetic resonance angiography (MRA) techniques display the coronary blood-pool along with the surrounding structures, including the myocardium, the ventricular and atrial blood-pool, and the great vessels. This representation of the coronary lumen is not directly analogous to the information provided by x-ray coronary angiography, in which the coronary lumen displayed by iodinated contrast agent is seen. Analogous "luminographic" data may be obtained using MR arterial spin tagging (projection coronary MRA) techniques. Such an approach was implemented using a 2D selective "pencil" excitation for aortic spin tagging in concert with a 3D interleaved segmented spiral imaging sequence with free-breathing, and real-time navigator technology. This technique allows for selective 3D visualization of the coronary lumen blood-pool, while signal from the surrounding structures is suppressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to SNR constraints, current "bright-blood" 3D coronary MRA approaches still suffer from limited spatial resolution when compared to conventional x-ray coronary angiography. Recent 2D fast spin-echo black-blood techniques maximize signal for coronary MRA at no loss in image spatial resolution. This suggests that the extension of black-blood coronary MRA with a 3D imaging technique would allow for a further signal increase, which may be traded for an improved spatial resolution. Therefore, a dual-inversion 3D fast spin-echo imaging sequence and real-time navigator technology were combined for high-resolution free-breathing black-blood coronary MRA. In-plane image resolution below 400 microm was obtained. Magn Reson Med 45:206-211, 2001.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconstruction of important parameters such as femoral offset and torsion is inaccurate, when templating is based on plain x-rays. We evaluate intraoperative reproducibility of pre-operative CT-based 3D-templating in a consecutive series of 50 patients undergoing primary cementless THA through an anterior approach. Pre-operative planning was compared to a postoperative CT scan by image fusion. The implant size was correctly predicted in 100% of the stems, 94% of the cups and 88% of the heads (length). The difference between the planned and the postoperative leg length was 0.3 + 2.3 mm. Values for overall offset, femoral anteversion, cup inclination and anteversion were 1.4 mm ± 3.1, 0.6° ± 3.3°, -0.4° ± 5° and 6.9° ± 11.4°, respectively. This planning allows accurate implant size prediction. Stem position and cup inclination are accurately reproducible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D + t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D + t measured projection sequence and the corresponding forward projections of the deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For free-breathing, high-resolution, three-dimensional coronary magnetic resonance angiography (MRA), the use of intravascular contrast agents may be helpful for contrast enhancement between coronary blood and myocardium. In six patients, 0.1 mmol/kg of the intravascular contrast agent MS-325/AngioMARK was given intravenously followed by double-oblique, free-breathing, three-dimensional inversion-recovery coronary MRA with real-time navigator gating and motion correction. Contrast-enhanced, three-dimensional coronary MRA images were compared with images obtained with a T2 prepulse (T2Prep) without exogenous contrast. The contrast-enhanced images demonstrated a 69% improvement in the contrast-to-noise ratio (6.6 +/- 1.1 vs. 11.1 +/- 2.5; P < 0.01) compared with the T2Prep approach. By using the intravascular agent, extensive portions (> 80 mm) of the native left and right coronary system could be displayed consistently with sub-millimeter in-plane resolution. The intravascular contrast agent, MS-325/AngioMARK, leads to a considerable enhancement of the blood/muscle contrast for coronary MRA compared with T2Prep techniques. The clinical value of the agent remains to be defined in a larger patient series. J. Magn. Reson. Imaging 1999;10:790-799.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acquisition duration of most three-dimensional (3D) coronary magnetic resonance angiography (MRA) techniques is considerably prolonged, thereby precluding breathholding as a mechanism to suppress respiratory motion artifacts. Splitting the acquired 3D volume into multiple subvolumes or slabs serves to shorten individual breathhold duration. Still, problems associated with misregistration due to inconsistent depths of expiration and diaphragmatic drift during sustained respiration remain to be resolved. We propose the combination of an ultrafast 3D coronary MRA imaging sequence with prospective real-time navigator technology, which allows correction of the measured volume position. 3D volume splitting using prospective real-time navigator technology, was successfully applied for 3D coronary MRA in five healthy individuals. An ultrafast 3D interleaved hybrid gradient-echoplanar imaging sequence, including T2Prep for contrast enhancement, was used with the navigator localized at the basal anterior wall of the left ventricle. A 9-cm-thick volume, with in-plane spatial resolution of 1.1 x 2.2 mm, was acquired during five breathholds of 15-sec duration each. Consistently, no evidence of misregistration was observed in the images. Extensive contiguous segments of the left anterior descending coronary artery (48 +/- 18 mm) and the right coronary artery (75 +/- 5 mm) could be visualized. This technique has the potential for screening for anomalous coronary arteries, making it well suited as part of a larger clinical MR examination. In addition, this technique may also be applied as a scout scan, which allows an accurate definition of imaging planes for subsequent high-resolution coronary MRA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional (3D) correction of glenoid erosion is critical to the long-term success of total shoulder replacement (TSR). In order to characterise the 3D morphology of eroded glenoid surfaces, we looked for a set of morphological parameters useful for TSR planning. We defined a scapular coordinates system based on non-eroded bony landmarks. The maximum glenoid version was measured and specified in 3D by its orientation angle. Medialisation was considered relative to the spino-glenoid notch. We analysed regular CT scans of 19 normal (N) and 86 osteoarthritic (OA) scapulae. When the maximum version of OA shoulders was higher than 10°, the orientation was not only posterior, but extended in postero-superior (35%), postero-inferior (6%) and anterior sectors (4%). The medialisation of the glenoid was higher in OA than normal shoulders. The orientation angle of maximum version appeared as a critical parameter to specify the glenoid shape in 3D. It will be very useful in planning the best position for the glenoid in TSR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of the present article was to perform three-dimensional (3D) single photon emission tomography-based dosimetry in radioimmunotherapy (RIT) with (90)Y-ibritumomab-tiuxetan. A custom MATLAB-based code was used to elaborate 3D images and to compare average 3D doses to lesions and to organs at risk (OARs) with those obtained with planar (2D) dosimetry. Our 3D dosimetry procedure was validated through preliminary phantom studies using a body phantom consisting of a lung insert and six spheres with various sizes. In phantom study, the accuracy of dose determination of our imaging protocol decreased when the object volume decreased below 5 mL, approximately. The poorest results were obtained for the 2.58 mL and 1.30 mL spheres where the dose error evaluated on corrected images with regard to the theoretical dose value was -12.97% and -18.69%, respectively. Our 3D dosimetry protocol was subsequently applied on four patients before RIT with (90)Y-ibritumomab-tiuxetan for a total of 5 lesions and 4 OARs (2 livers, 2 spleens). In patient study, without the implementation of volume recovery technique, tumor absorbed doses calculated with the voxel-based approach were systematically lower than those calculated with the planar protocol, with average underestimation of -39% (range from -13.1% to -62.7%). After volume recovery, dose differences reduce significantly, with average deviation of -14.2% (range from -38.7.4% to +3.4%, 1 overestimation, 4 underestimations). Organ dosimetry in one case overestimated, in the other underestimated the dose delivered to liver and spleen. However, both for 2D and 3D approach, absorbed doses to organs per unit administered activity are comparable with most recent literature findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purposes of this study were to characterize the performance of a 3-dimensional (3D) ordered-subset expectation maximization (OSEM) algorithm in the quantification of left ventricular (LV) function with (99m)Tc-labeled agent gated SPECT (G-SPECT), the QGS program, and a beating-heart phantom and to optimize the reconstruction parameters for clinical applications. METHODS: A G-SPECT image of a dynamic heart phantom simulating the beating left ventricle was acquired. The exact volumes of the phantom were known and were as follows: end-diastolic volume (EDV) of 112 mL, end-systolic volume (ESV) of 37 mL, and stroke volume (SV) of 75 mL; these volumes produced an LV ejection fraction (LVEF) of 67%. Tomographic reconstructions were obtained after 10-20 iterations (I) with 4, 8, and 16 subsets (S) at full width at half maximum (FWHM) gaussian postprocessing filter cutoff values of 8-15 mm. The QGS program was used for quantitative measurements. RESULTS: Measured values ranged from 72 to 92 mL for EDV, from 18 to 32 mL for ESV, and from 54 to 63 mL for SV, and the calculated LVEF ranged from 65% to 76%. Overall, the combination of 10 I, 8 S, and a cutoff filter value of 10 mm produced the most accurate results. The plot of the measures with respect to the expectation maximization-equivalent iterations (I x S product) revealed a bell-shaped curve for the LV volumes and a reverse distribution for the LVEF, with the best results in the intermediate range. In particular, FWHM cutoff values exceeding 10 mm affected the estimation of the LV volumes. CONCLUSION: The QGS program is able to correctly calculate the LVEF when used in association with an optimized 3D OSEM algorithm (8 S, 10 I, and FWHM of 10 mm) but underestimates the LV volumes. However, various combinations of technical parameters, including a limited range of I and S (80-160 expectation maximization-equivalent iterations) and low cutoff values (< or =10 mm) for the gaussian postprocessing filter, produced results with similar accuracies and without clinically relevant differences in the LV volumes and the estimated LVEF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Atherosclerosis results in a considerable medical and socioeconomic impact on society. We sought to evaluate novel magnetic resonance imaging (MRI) angiography and vessel wall sequences to visualize and quantify different morphologic stages of atherosclerosis in a Watanabe hereditary hyperlipidemic (WHHL) rabbit model. MATERIAL AND METHODS: Aortic 3D steady-state free precession angiography and subrenal aortic 3D black-blood fast spin-echo vessel wall imaging pre- and post-Gadolinium (Gd) was performed in 14 WHHL rabbits (3 normal, 6 high-cholesterol diet, and 5 high-cholesterol diet plus endothelial denudation) on a commercial 1.5 T MR system. Angiographic lumen diameter, vessel wall thickness, signal-/contrast-to-noise analysis, total vessel area, lumen area, and vessel wall area were analyzed semiautomatically. RESULTS: Pre-Gd, both lumen and wall dimensions (total vessel area, lumen area, vessel wall area) of group 2 + 3 were significantly increased when compared with those of group 1 (all P < 0.01). Group 3 animals had significantly thicker vessel walls than groups 1 and 2 (P < 0.01), whereas angiographic lumen diameter was comparable among all groups. Post-Gd, only diseased animals of groups 2 + 3 showed a significant (>100%) signal-to-noise ratio and contrast-to-noise increase. CONCLUSIONS: A combination of novel 3D magnetic resonance angiography and high-resolution 3D vessel wall MRI enabled quantitative characterization of various atherosclerotic stages including positive arterial remodeling and Gd uptake in a WHHL rabbit model using a commercially available 1.5 T MRI system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Images of myocardial strain can be used to diagnose heart disease, plan and monitor treatment, and to learn about cardiac structure and function. Three-dimensional (3D) strain is typically quantified using many magnetic resonance (MR) images obtained in two or three orthogonal planes. Problems with this approach include long scan times, image misregistration, and through-plane motion. This article presents a novel method for calculating cardiac 3D strain using a stack of two or more images acquired in only one orientation. The zHARP pulse sequence encodes in-plane motion using MR tagging and out-of-plane motion using phase encoding, and has been previously shown to be capable of computing 3D displacement within a single image plane. Here, data from two adjacent image planes are combined to yield a 3D strain tensor at each pixel; stacks of zHARP images can be used to derive stacked arrays of 3D strain tensors without imaging multiple orientations and without numerical interpolation. The performance and accuracy of the method is demonstrated in vitro on a phantom and in vivo in four healthy adult human subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate the agreement between multislice CT (MSCT) and intravascular ultrasound (IVUS) to assess the in-stent lumen diameters and lumen areas of left main coronary artery (LMCA) stents. Design: Prospective, observational single centre study. Setting: A single tertiary referral centre. Patients: Consecutive patients with LMCA stenting excluding patients with atrial fibrillation and chronic renal failure. Interventions: MSCT and IVUS imaging at 912 months follow-up were performed for all patients. Main outcome measures: Agreement between MSCT and IVUS minimum luminal area (MLA) and minimum luminal diameter (MLD). A receiver operating characteristic (ROC) curve was plotted to find the MSCT cut-off point to diagnose binary restenosis equivalent to 6 mm2 by IVUS. Results: 52 patients were analysed. PassingBablok regression analysis obtained a β coefficient of 0.786 (0.586 to 1.071) for MLA and 1.250 (0.936 to 1.667) for MLD, ruling out proportional bias. The α coefficient was −3.588 (−8.686 to −0.178) for MLA and −1.713 (−3.583 to −0.257) for MLD, indicating an underestimation trend of MSCT. The ROC curve identified an MLA ≤4.7 mm2 as the best threshold to assess in-stent restenosis by MSCT. Conclusions: Agreement between MSCT and IVUS to assess in-stent MLA and MLD for LMCA stenting is good. An MLA of 4.7 mm2 by MSCT is the best threshold to assess binary restenosis. MSCT imaging can be considered in selected patients to assess LMCA in-stent restenosis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate gadocoletic acid (B-22956), a gadolinium-based paramagnetic blood pool agent, for contrast-enhanced coronary magnetic resonance angiography (MRA) in a Phase I clinical trial, and to compare the findings with those obtained using a standard noncontrast T2 preparation sequence. MATERIALS AND METHODS: The left coronary system was imaged in 12 healthy volunteers before B-22956 application and 5 (N = 11) and 45 (N = 7) minutes after application of 0.075 mmol/kg of body weight (BW) of B-22956. Additionally, imaging of the right coronary system was performed 23 minutes after B-22956 application (N = 6). A three-dimensional gradient echo sequence with T2 preparation (precontrast) or inversion recovery (IR) pulse (postcontrast) with real-time navigator correction was used. Assessment of the left and right coronary systems was performed qualitatively (a 4-point visual score for image quality) and quantitatively in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, visible vessel length, maximal luminal diameter, and the number of visible side branches. RESULTS: Significant (P < 0.01) increases in SNR (+42%) and CNR (+86%) were noted five minutes after B-22956 application, compared to precontrast T2 preparation values. A significant increase in CNR (+40%, P < 0.05) was also noted 45 minutes postcontrast. Vessels (left anterior descending artery (LAD), left coronary circumflex (LCx), and right coronary artery (RCA)) were also significantly (P < 0.05) sharper on postcontrast images. Significant increases in vessel length were noted for the LAD (P < 0.05) and LCx and RCA (both P < 0.01), while significantly more side branches were noted for the LAD and RCA (both P < 0.05) when compared to precontrast T2 preparation values. CONCLUSION: The use of the intravascular contrast agent B-22956 substantially improves both objective and subjective parameters of image quality on high-resolution three-dimensional coronary MRA. The increase in SNR, CNR, and vessel sharpness minimizes current limitations of coronary artery visualization with high-resolution coronary MRA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we propose a novel method for calculating cardiac 3-D strain. The method requires the acquisition of myocardial short-axis (SA) slices only and produces the 3-D strain tensor at every point within every pair of slices. Three-dimensional displacement is calculated from SA slices using zHARP which is then used for calculating the local displacement gradient and thus the local strain tensor. There are three main advantages of this method. First, the 3-D strain tensor is calculated for every pixel without interpolation; this is unprecedented in cardiac MR imaging. Second, this method is fast, in part because there is no need to acquire long-axis (LA) slices. Third, the method is accurate because the 3-D displacement components are acquired simultaneously and therefore reduces motion artifacts without the need for registration. This article presents the theory of computing 3-D strain from two slices using zHARP, the imaging protocol, and both phantom and in-vivo validation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate the agreement between multislice CT (MSCT) and intravascular ultrasound (IVUS) to assess the in-stent lumen diameters and lumen areas of left main coronary artery (LMCA) stents. Design: Prospective, observational single centre study. Setting: A single tertiary referral centre. Patients: Consecutive patients with LMCA stenting excluding patients with atrial fibrillation and chronic renal failure. Interventions: MSCT and IVUS imaging at 9-12 months follow-up were performed for all patients. Main outcome measures: Agreement between MSCT and IVUS minimum luminal area (MLA) and minimum luminal diameter (MLD). A receiver operating characteristic (ROC) curve was plotted to find the MSCT cut-off point to diagnose binary restenosis equivalent to 6 mm2 by IVUS. Results: 52 patients were analysed. Passing-Bablok regression analysis obtained a β coefficient of 0.786 (0.586 to 1.071) for MLA and 1.250 (0.936 to 1.667) for MLD, ruling out proportional bias. The α coefficient was −3.588 (−8.686 to −0.178) for MLA and −1.713 (−3.583 to −0.257) for MLD, indicating an underestimation trend of MSCT. The ROC curve identified an MLA ≤4.7 mm2 as the best threshold to assess in-stent restenosis by MSCT. Conclusions: Agreement between MSCT and IVUS to assess in-stent MLA and MLD for LMCA stenting is good. An MLA of 4.7 mm2 by MSCT is the best threshold to assess binary restenosis. MSCT imaging can be considered in selected patients to assess LMCA in-stent restenosis