946 resultados para Third Order Regular of St. Francis.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography : p. 169-170.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel fibre grating device is demonstrated with tuneable chromatic dispersion slope. The tuning range is 70 to 190 ps/nm and 0 to 25 ps/nm2 for the second and third order dispersion, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrodinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrödinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrödinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonlinear process is considered of the surface wave third harmonics generation in a slowing-down semiconductor-metal structure. The process is conditioned by non-parabolicity of the charge carrier dispersion law. It is shown that in narrow-gap semiconducting materials it is necessary to account for the process together with the surface wave second harmonics generation conditioned by nonlinearity of quasi-hydrodynamics and the Maxwell equations. The conclusion is made that the third harmonies amplitude in narrow-gap semiconductors may exceed substantially the signal amplitude at the 3w frequency in a gas plasma and be of the same order with the surface waves second harmonies amplitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 1997 the Finnish Jabal Haroun Project (FJHP) has studied the ruins of the monastery and pilgrimage complex (Gr. oikos) of Aaron located on a plateau of the Mountain of Prophet Aaron, Jabal an-Nabi Harûn, ca. 5 km to the south-west of the UNESCO World Heritage site of Petra in Jordan. The state of conservation and the damaging processes affecting the stone structures of the site are studied in this M.A. thesis. The chapel was chosen as an example, as it represents the phasing and building materials of the entire site. The aim of this work is to act as a preliminary study with regards to the planning of long-term conservation at the site. The research is empirical in nature. The condition of the stones in the chapel walls was mapped using the Illustrated Glossary on Stone Deterioration, by the ICOMOS International Scientific Committee for Stone. This glossary combines several standards and systems of damage mapping used in the field. Climatic conditions (temperature and RH %) were monitored for one year (9/2005-8/2006) using a HOBO Microstation datalogger. The measurements were compared with contemporary measurements from the nearest weather station in Wadi Musa. Salts in the stones were studied by taking samples from the stone surfaces by scraping and with the “Paper Pulp”-method; with a poultice of wet cellulose fiber (Arbocel BC1000) and analyzing what main types of salts were to be found in the samples. The climatic conditions on the mountain were expected to be rapidly changing and to differ clearly from conditions in the neighboring areas. The rapid changes were confirmed, but the values did not differ as much as expected from those nearby: the 12 months monitored had average temperatures and were somewhat drier than average. Earlier research in the area has shown that the geological properties of the stone material influence its deterioration. The damage mapping showed clearly, that salts are also a major reason for stone weathering. The salt samples contained several salt combinations, whose behavior in the extremely unstable climatic conditions is difficult to predict. Detailed mapping and regular monitoring of especially the structures, that are going remain exposed, is recommended in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.