540 resultados para Thiol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isotherms of adsorption of CuX2 (XCl-, Br-, ClO4-) by silica gel chemically modified with 5-amino-1,3,4-thiadiazole-2-thiol were studied in acetone and ethanol solutions, at 25 degrees C. The following equilibria constants (in L mol(-1)) were determined: (a) CuCl2, 3.2 x 10(3) (ac), 2.5 x 10(3) (eth); (b) CuBr2, 2.9 x 10(3) (ac), 2.3 x 10(3) (eth); (c) Cu(ClO4)(2), 1.8 x 10(3) (ac), 1.2 x 10(3) (eth); ac, acetone; eth, ethanol. The electron spin resonance spectra of the surface complexes indicated a tetragonal-distorted structure in the case of lower degrees of metal loading on the chemically modified surface. The d-d electronic transition spectra showed that for the ClO4- complex, the peak of absorption did not change for any degree of metal loading and for Cl- and Br- complexes, the peak maxima shifted to higher energy with lower metal loadings. (C) 1998 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

5-amino-1,3,4-thiadiazole-2-thiol groups attached on a silica gel surface have been used for adsorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II) and Zn(II) from aqueous solutions. The adsorption capacities for each metal ion were (in mmol.g(-1)): Cd(II)= 0.35, Co(II)= 0.10, Cu(II)= 0.15, Fe(III)= 0.20, Hg(Il)= 0.46, Ni(II)= 0.16, Pb(II)= 0.13 and Zn(II)= 0.15. The modified silica gel was applied in the preconcentration and quantification of trace level metal ions present in water samples (river, and bog water).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Miliin, a new thiol-dependent serine protease purified from the latex of Euphorbia milii possesses a molecular weight of 79 kDa, an isoelectric point of 4.3 and is optimally active at 60 degrees C in the pH range of and 7.5-11.0. Activity tests indicate that milliin is a thiol-dependent serine protease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of 5-amino-1,3,4-thiadiazole-2-thiol modified silica gel (SiATT), and the results of a study of the adsorption and preconcentration (in batch, and in flow using a column technique) of Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II) and Zn(II) in ethanol medium. The adsorption capacities for each metal ion were (in mmol g -1): Cd(II) = 0.11, Co(II) = 0.10, Cu(II) = 0.20, Fe(III) = 0.20, Ni(II) = 0.16, Pb(II) = 0.08 and Zn(II) = 0.12. The results obtained in the flow experiments, showed a recovery of ca. 100% of the metal ions adsorbed in a column packed with 2 g of SiATT, using 5 mL of 2.0 mol L -1 HCl solution as eluent. The sorption-desorption of the metal ions made possible the development of a preconcentration method and quantification by Flame AAS of metal ions at trace level in fuel ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is often assumed that the hydrogen atoms in the thiol groups of a benzene-1,4-dithiol dissociate when Au-benzene-1,4-dithiol-Au junctions are formed. We demonstrate, by stability and transport property calculations, that this assumption cannot be made. We show that the dissociative adsorption of methanethiol and benzene-1,4-dithiol molecules on a flat Au(111) surface is energetically unfavorable and that the activation barrier for this reaction is as high as 1 eV. For the molecule in the junction, our results show, for all electrode geometries studied, that the thiol junctions are energetically more stable than their thiolate counterparts. Due to the fact that density functional theory (DFT) within the local density approximation (LDA) underestimates the energy difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital by several electron-volts, and that it does not capture the renormalization of the energy levels due to the image charge effect, the conductance of the Au-benzene-1,4-dithiol-Au junctions is overestimated. After taking into account corrections due to image charge effects by means of constrained-DFT calculations and electrostatic classical models, we apply a scissor operator to correct the DFT energy level positions, and calculate the transport properties of the thiol and thiolate molecular junctions as a function of the electrode separation. For the thiol junctions, we show that the conductance decreases as the electrode separation increases, whereas the opposite trend is found for the thiolate junctions. Both behaviors have been observed in experiments, therefore pointing to the possible coexistence of both thiol and thiolate junctions. Moreover, the corrected conductance values, for both thiol and thiolate, are up to two orders of magnitude smaller than those calculated with DFT-LDA. This brings the theoretical results in quantitatively good agreement with experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A montmorillonite from Wyoming-USA was used to prepare an organo-clay complex, named 2-thiazoline-2-thiol-hexadecyltrimethylammonium-clay (TZT-HDTA-clay), for the purpose of the selective adsorption of the heavy metals ions and possible use as a chemically modified carbon paste electrode (CMCPE). Adsorption isotherms of Hg 2+, Pb 2+, Cd 2+, Cu 2+, and Zn 2+ from aqueous solutions as a function of the pH were studied at 298 K. Conditions for quantitative retention and elution were established for each metal by batch and column methods. The organo-clay complex was very selective to Hg(II) in aqueous solution in which other metals and ions were also present. The accumulation voltammetry of Hg(II) was studied at a carbon paste electrode chemically modified with this material. The mercury response was evaluated with respect to the pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. A carbon paste electrode modified by TZT-HDTA-clay showed two peaks: one cathodic peak at about 0.0 V and an anodic peak at 0.25 V, scanning the potential from -0.2 to 0.8 V (0.05 M KNO 3 vs. Ag/AgCl). The anodic peak at 0.25 V presents excellent selectivity for Hg(II) ions in the presence of foreign ions. The detection limit was estimated as 0.1 μg L -1. The precision of determination was satisfactory for the respective concentration level. 2005 © The Japan Society for Analytical Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Click chemistry is a powerful technology for the functionalization of therapeutic proteins with effector moieties, because of its potential for bio-orthogonal, regio-selective, and high-yielding conjugation under mild conditions. Designed Ankyrin Repeat Proteins (DARPins), a novel class of highly stable binding proteins, are particularly well suited for the introduction of clickable methionine surrogates such as azidohomoalanine (Aha) or homopropargylglycine (Hpg), since the DARPin scaffold can be made methionine-free by an M34L mutation in the N-cap which fully maintains the biophysical properties of the protein. A single N-terminal azidohomoalanine, replacing the initiator Met, is incorporated in high yield, and allows preparation of "clickable" DARPins at about 30 mg per liter E. coli culture, fully retaining stability, specificity, and affinity. For a second modification, we introduced a cysteine at the C-terminus. Such DARPins could be conveniently site-specifically linked to two moieties, polyethylene glycol (PEG) to the N-terminus and the fluorophore Alexa488 to the C-terminus. We present a DARPin selected against the epithelial cell adhesion molecule (EpCAM) with excellent properties for tumor targeting as an example. We used these doubly modified molecules to measure binding kinetics on tumor cells and found that PEGylation has no effect on dissociation rate, but slightly decreases the association rate and the maximal number of cell-bound DARPins, fully consistent with our previous model of PEG action obtained in vitro. Our data demonstrate the benefit of click chemistry for site-specific modification of binding proteins like DARPins to conveniently add several functional moieties simultaneously for various biomedical applications.