776 resultados para Thermoplastic Conducting Composites


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of UV-C irradiation of the TPS and PCL biocomposites with sisal bleached fibers was investigated. The biocomposite was UV-C irradiated at room temperature under air atmosphere. The structural and morphological changes produced when the films were exposed to UV irradiation for 142 h, were monitored using Scanning Electron Microscopy (SEM), Mechanical Tensile Tests, Differential Scanning Calorimetry (DSC), X-ray diffraction, Thermogravimetric analysis (TGA), and Fourier transform infra-red analysis (FTIR). Addition of 5-10% fibers in composites exhibited improved mechanical and thermal properties attributed to more efficient dispersibility of fiber in the matrix and good compatibility between fibers and the matrix polymer, however, after irradiated, the tensile properties decreased due to chain scission. The samples of irradiated PCL and IFS showed crystallinity increase, whereas the blend and composites showed a decrease in crystallinity. The DSC and X-ray diffraction studies suggested interaction between polymers in the blend via carboxyl groups in thermoplastic starch-PCL and hydroxyl groups in fibers. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two groups of hybrid organic-inorganic composites exhibiting ionic conduction properties, so called ORMOLYTES (organically modified electrolytes), have been prepared by the sol-gel process. The first group has been prepared from mixture of a lithium salt and 3-isocyanatopropyltriethoxysilane(IsoTrEOS),O,O′-bis(2-aminopropyl) polypropyleneglycol. These materials produce chemical bonds between the organic (polymer) and the inorganic (silica) phases. The second group has been prepared by an ultrasonic method from a mixture of tetraethoxysilane (TEOS), polypropyleneglycol and a lithium salt. The organic and inorganic phases are not chemically bonded in these samples. The Li+ ionic conductivity, σ, of all these materials has been studied by AC impedance spectroscopy up to 100°C. Values of σ up to 10-6 Ω-1·cm-1 have been found at room temperature. A systematic study of the effects of lithium concentration, polymer chain length and the polymer to silica weight ratio on σ shows that there is a strong dependence of σ on the preparation conditions. The dynamic properties of the Li+ ion and the polymer chains as a function of temperature between -100 and 120°C were studied using 7Li solid-state NMR measurements. The ionic conductivity of both families are compared and particular attention is paid to the nature of the bonds between the organic and inorganic components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work has been performed at Tapetes Sao Carlos-Brazil with the cooperation of the DaimlerChrysler Research Center Team in Ulm - Germany. The objective of the present paper is to report the results obtained with natural fiber reinforced unsaturated polyester (UP) composites, concerning surface quality measurements. The fibers that have been chosen for this work were sisal and curaua. The samples were produced by compression molding technique and afterwards submitted to three different tests, namely: a) thermal aging; b) water absorption and c) artificial weathering. The surface parameters measured before and after the tests were gloss, haze, short and long-waviness. The results have shown that after the tests there is a high loss of gloss, a high increase in haze, and a high increase in short and long-waviness as well. Curaua reinforced composites had a slightly better behavior when compared with sisal reinforced composites. The effect of the presence of filler and the addition of thermoplastic polyester (TP) on the material behavior has not been evidently detected. This result shows that the conventional technology/methods applied to UP-Fiberglass systems cannot be transferred to natural fibers without any modification. The fiber-matrix interaction and its response to the presence of additives must be fully understood before a successful processing route can be developed for painted natural fibers reinforced UP. Copyright © 2001 Society of Automotive Engineers, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this article is to propose advances for the preparation of hybrid nanocomposites prepared by the combination of intercalation from solution and melt-processing methods. This research investigates the effect of the laponite RDS content on the thermal, structural, and mechanical properties of thermoplastic starch (TPS). X-ray diffraction was performed to investigate the dispersion of the laponite RDS layers into the TPS matrix. The results show good nanodispersion, intercalation, and exfoliation of the clay platelets, indicating that these composites are true nanocomposites. The presence of laponite RDS also improves the thermal stability and mechanical properties of the TPSmatrix due to its reinforcement effect which was optimized by the high degree of exfoliation of the clay. Thus, these results indicate that the exfoliated TPS-laponite nanocomposites have great potential for industrial applications and, more specifically, in the packaging field. © The Author(s) 2011 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to investigate how environmental degradation affects the mechanical and thermal performance of polyetherimide/carbon fiber laminates, in this work different weathering were conducted. Additionally, dynamic mechanical analysis, interlaminar shear strength tests and non-destructive inspections were performed on this composite before and after being submitted to hygrothermal, UV radiation and thermal shock weathering. According to our results, hygrothermally aged samples had their glass transition temperature and elastic and storage moduli reduced by plasticization effect. Photooxidation, due to UV radiation exposure, occurred only on the surface of the laminates. Thermal shock induced a reversible stress on the composite's interface region. The results revealed that the mechanical behavior can vary during weather exposure but since this variation is only subtle, this thermoplastic laminate can be considered for high-performance applications, such as aerospace. © The Author(s) 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared with the traditional composites, the incorporation of carbon nanotubes into polymeric matrices can generate materials with superior properties, especially thermal, electrical and tribological properties. The aim of this study was to study the polyamide 6.6/carbon nanotubes (PA 6.6/CNT) nanostructured composites crystallization kinetics. The solution mixing technique was used to obtain the nanostructured composites studied in this work. PA 6.6 films were produced with amounts of 0.1, 0.5, and 1.0 wt% (weight/weight) CNT. X-ray diffraction analyses were performed in order to determine the crystallographic properties of nanostructured composite. The nanostructured composites crystallization kinetic study was performed using the differential scanning calorimetry under isothermal and nonisothermal (dynamic) conditions. The results have shown addition of CNTs in the PA 6.6 reduces the Avrami exponent, affecting the crystallization process of the composite. © The Author(s) 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)