965 resultados para Thermal potential


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform global linear stability analysis and idealized numerical simulations in global thermal balance to understand the condensation of cold gas from hot/virial atmospheres (coronae), in particular the intracluster medium (ICM). We pay particular attention to geometry (e.g. spherical versus plane-parallel) and the nature of the gravitational potential. Global linear analysis gives a similar value for the fastest growing thermal instability modes in spherical and Cartesian geometries. Simulations and observations suggest that cooling in haloes critically depends on the ratio of the cooling time to the free-fall time (t(cool)/t(ff)). Extended cold gas condenses out of the ICM only if this ratio is smaller than a threshold value close to 10. Previous works highlighted the difference between the nature of cold gas condensation in spherical and plane-parallel atmospheres; namely, cold gas condensation appeared easier in spherical atmospheres. This apparent difference due to geometry arises because the previous plane-parallel simulations focused on in situ condensation of multiphase gas but spherical simulations studied condensation anywhere in the box. Unlike previous claims, our non-linear simulations show that there are only minor differences in cold gas condensation, either in situ or anywhere, for different geometries. The amount of cold gas depends on the shape of tcool/tff; gas has more time to condense if gravitational acceleration decreases towards the centre. In our idealized plane-parallel simulations with heating balancing cooling in each layer, there can be significant mass/energy/momentum transfer across layers that can trigger condensation and drive tcool/tff far beyond the critical value close to 10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two dimensional (2D) materials demonstrate several novel electrical, mechanical, and thermal properties which are quite distinctive to those of their bulk form. Among many others, one important potential application of the 2D material is its use in the field of energy harvesting. Owing to that, here we present a detailed study on electrical as well as thermal transport of monolayer MoS2, in quasi ballistic regime. Besides the perfect monolayer in its pristine form, we also consider various line defects which have been experimentally observed in mechanically exfoliated MoS2 samples. For calculating various parameters related to the electrical transmission, we employ the non-equilibrium Green's function-density functional theory combination. However, to obtain the phonon transmission, we take help of the parametrized Stillinger-Weber potential which can accurately delineate the inter-atomic interactions for the monolayer MoS2. Due to the presence of line defects, we observed significant reductions in both the charge carrier and the phonon transmissions through a monolayer MoS2 flake. Moreover, we also report a comparative analysis showing the temperature dependency of the thermoelectric figure of merit values, as obtained for the perfect as well as the other defective 2D samples. (C) 2016 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nearest-neighbour Lennard-Jones potential from the embedded-atom method is extended to a form that includes more than nearest neighbours. The model has been applied to study melting with molecular dynamics. The calculated melting point, fractional volume change on melting, heat of fusion and linear coefficients of thermal expansion are in good agreement with experimental data. We have found that the second and third neighbours influence the melting point distinctly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rectangular structural unit cell of a-Al2O3 is generated from its hexagonal one. For the rectangular structural crystal with a simple interatomic potential [Matsui, Mineral Mag. 58A, 571 (1994)], the relations of lattice constants to homogeneous pressure and temperature are calculated by using Monte-Carlo method at temperature 298K and 0 GPa, respectively. Both numerical results agree with experimental ones fairly well. By comparing pair distribution function, the crystal structure of a-Al2O3 has no phase transition in the range of systematic parameters. Based on the potential model, pressure dependence of isothermal bulk moduli is predicted. Under variation of general strains, which include of external and internal strains, elastic constants of a-Al2O3 in the different homogeneous load are determined. Along with increase of pressure, axial elastic constants increase appreciably, but nonaxial elastic constants are slowly changed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-equilibrium molecular dynamics (NEMD) simulations are performed to calculate thermal conductivity. The environment-dependent interatomic potential (EDIP) potential on crystal silicon is adopted as a model system. The issues are related to nonlinear response, local thermal equilibrium and statistical averaging. The simulation results by non-equilibrium molecular dynamics show that the calculated thermal conductivity decreases almost linearly as the film thickness reduced at the nanometre scale. The effect of size on the thermal conductivity is also obtained by a theoretic analysis of the kinetic theory and formulas of the heat capacity. The analysis reveals that the contributions of phonon mean free path (MFP) and phonon number in a finite cell to thermal conductivity are very important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the plasma processing of ultrafine particles of material, the heat transfer and force are considerably affected by particle charging. In this communication a new model, including thermal electron emission and incorporating the effect of electric field near the particle surface, is developed for metallic spherical particles under the condition of a thin plasma sheath. Based on this model, the particle floating potential, and thus the heat transfer and force, can be detemined more accurately and more realistically than previously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal expansion coefficient (TEC) of an ideal crystal is derived by using a method of Boltzmann statistics. The Morse potential energy function is adopted to show the dependence of the TEC on the temperature. By taking the effects of the surface relaxation and the surface energy into consideration, the dimensionless TEC of a nanofilm is derived. It is shown that with decreasing thickness, the TEC can increase or decrease, depending on the surface relaxation of the nanofilm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The materials considered in our analysis were ZrB2 ceramic matrix composites. Effect of two different additives (graphite and AlN) on thermal shock stability for the materials was measured by water quench test. It showed that it may provide more stable thermal shock properties with additives of graphite. It was explained by different thermal properties and crack resistance of the two materials in detail. Surface oxidation was one of main reasons for strength degradation of ceramic with additives of graphite after quenched in water, and surface crack was one of main reasons for strength degradation of ceramic with additives of AlN after quenched in water. It was presented that it was a potential method for improving thermal shock stability of ZrB2 ceramic matrix composites by introducing proper quantities of graphite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new azo dyes of alpha-isoxazolylazo-beta-dilcetones and their Ni(II) and Cu(II) complexes with blue-violet light wavelength were synthesized using a coupling component, different diazo components and metal (II) ions (Ni2+ and Cu2+). Based on the elemental analysis, MS spectra and FT-IR spectral analyses, azo dyes were unequivocally shown to exist as hydrazoketo and azoenol forms which were respectively obtained from the solution forms and from the solid forms. The action of sodium methoxide (NaOMe) on azo dyes in solutions converts hydrazoketo form into azoenol form, so azo dyes are coordinated with metal (II) ions as co-ligands in the azoenol forms. The solubility of all the compounds in common organic solvents such as 2,2,3,3-tetrafluoro-1-propanol (TFP) or chloroform (CHCl3) and absorption properties of spin-coating thin films were measured. The difference of absorption maxima from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. It is found that these new metal (II) complexes had potential application for high-density digital versatile disc-recordable (HD-DVD-R) system due to their good solubility in organic solvents, reasonable and controllable absorption spectra in blue-violet light region and high thermal stability. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three kinds of rare earth complexes derived from dibenzoylmethane (DBM) ligand were synthesized by reacting free ligand and different rare earth ions(La (3+), Sm3+ and Gd3+). Their contents and structures were postulated based on elemental analysis, LDI-TOF-MS, FT-IR spectra and UV-Vis spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption and reflection properties of thin film and thermal stability of these complexes were evaluated. These complexes would be a promising recording material for high-density digital versatile disc-recordable (HD-DVD-R) system. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Divalent metal fluorides MF2 (M=Sr, Mg, Ca) in oxyfluoride tellurite glasses TeO2-BaF2-LaF3 were synthesized. The densities, refractive indices and characteristic temperatures of synthesized glasses were measured. The influence of divalent metal fluorides MF2 (M=Sr, Mg, Ca) on the thermal stability of oxyfluoride tellurite glasses TeO2-BaF2-LaF3 were studied. Results show that the replacement of BaF2 by SrF2 and MgF2 can enhance the thermal stability against crystallization of the glass. A glass system with good thermal stability was produced, which could be a potential candidate for the host materials of the fiber devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal based thermal microactuators normally have lower operation temperatures than those of Si-based ones; hence they have great potential for applications. However, metal-based thermal actuators easily suffer from degradation such as plastic deformation. In this study, planar thermal actuators were made by a single mask process using electroplated nickel as the active material, and their thermal degradation has been studied. Electrical tests show that the Ni-based thermal actuators deliver a maximum displacement of ∼20μm at an average temperature of ∼420°C, much lower than that of Si-based microactuators. However, the displacement strongly depends on the frequency and peak voltage of the pulse applied. Back bending was clearly observed at a maximum temperature as low as 240°C. Both forward and backward displacements increase with increasing the temperature up to ∼450°C, and then decreases with power. Scanning electron microscopy observation clearly showed that Ni structure deforms and reflows at power above 50mW. The compressive stress is believed to be responsible for Ni piling-up (creep), while the tensile stress upon removing the pulse current is responsible for necking at the hottest section of the device. Energy dispersive X-ray diffraction analysis revealed severe oxidation of the Ni-structure induced by Joule-heating of the current.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton productivity is the common and important factor being considered in determining the overall status of a given body of water. This is because they are found at the base of an energy or food chain, being the basic source of primary food in a given aquatic system. Hence, information on their contribution is essential in indicating how much biomass energy will be available to all other living resources in the system. Though the primary productivity of shallow lakes is characterized by mixed populations of phytoplankton and submersed aquatic vegetation in the open water. Lake Choghakhor, is a shallow lake, located in Chaharmahal-Bakhtiyari Province. This lake is the most important ecosystem in the region especially for waterfowl populations, has a recreational value and supports tourism and fisheries. During last decade Choghakhor has been influenced by some man-made impacts such as water level fluctuation, agricultural discharge and fish (Cyprinids) introduction causing a serious problem in its trophic states. So water quality for physical, chemical and biological was monitored in five sampling stations, from April 2003 to March 2004. As biological parameters we studied phytoplankton, epiphytic algae, and zooplankton and macrobenthose community structure. Chlorophyll a content for phytoplankton and epiphytes was measured to estimate production of these groups (biomass over time). Also we determined biomasses of submersed macrophytes and macrobenthose and primary production of phytoplankton (dark and light bottles technique) to estimate fish production. The results of this study showed Lake Choghakhor did not undergo stable thermal and oxygen stratification, and the lake water was mixed throughout the study (the lake mixing regime is polymictic). Now submerged plants especially Myriophyllum spicatum has covered almost the entire lake and dense macrophyte beds (Polygonom amphibium), located on the east southern end of the lake appear to act as a sink for these nutrients. Lake Choghakhor appeared to be in a macrophyte dominated clear water state with low TP (annual mean: 24± 15μg.l-1) and chlorophyll a (annual mean: 3±1.28μg.l-1) concentrations and very high Secchi depth. The grazing pressure of dominant pelagic filtering zooplankton Daphnia longespina did not seem to be significant in determining the low phytoplankton crop expressed as chlorophyll a. We expect that sequestering of nutrients by submerged plants and associated epiphytes are the dominant stabilizing mechanisms suppressing the phytoplankton crop of Lake Choghakhor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent progress in material science has proved that high-temperature superconductors, such as bulk melt-processed yttrium barium copper oxide (YBCO) single domains, have a great potential to trap significant magnetic fields. In this paper, we will describe a novel method of YBCO magnetization that only requires the applied field to be at the level of a permanent magnet. Instead of applying a pulsed high magnetic field on the YBCO, a thermally actuated material (TAM), such as Mg0.15}hbox{Cu}0.15} hbox{Zn0.7 Ti0.04}Fe1.96boxO4, has been used as an intermedium to create a travelling magnetic field by changing the local temperature so that the local permeability is changed to build up the magnetization of the YBCO gradually after multiple pumping cycles. It is well known that the relative permeability of ferrite is a function of temperature and its electromagnetic properties can be greatly changed by adding dopants such as Mg or Ti; therefore, it is considered to be the most promising TAM for future flux pumping technology. Ferrite samples were fabricated by means of the conventional ceramic method with different dopants. Zinc and iron oxides were used as raw materials. The samples were sintered at 1100 C, 1200 C} , and 1300 C. The relative permeability of the samples was measured at temperatures ranging from 77 to 300 K. This work investigates the variation of the magnetic properties of ferrites with different heat treatments and doping elements and gives a smart insight into finding better ferrites suitable for flux pumping technology. © 2002-2011 IEEE.