982 resultados para Thermal gradient


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heat flux data obtained during Cruise 20 of R/V Akademik Mstislav Keldysh in the Central Basin of the Indian Ocean and northern part of the Afanasy Nikitin Rise are presented. Thermal conditions on the rise are not associated with an anomalous zone of the large tectonic deformation block north of it. Geothermal data indicate that the Afanasy Nikitin Rise has formed near an ancient spreading axis. Distribution of measured heat flux values indicates an additional source of heat in the Central Basin resulting from dissipative heating of the crust in the two-stage plate tectonics model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We measured oxygen isotopes and Mg/Ca ratios in the surface-dwelling planktonic foraminifer Globigerinoides ruber (white s.s.) and the thermocline dweller Pulleniatina obliquiloculata to investigate upper ocean spatial variability in the Indo-Pacific Warm Pool (IPWP). We focused on three critical time intervals: the Last Glacial Maximum (LGM; 18-21.5 ka), the early Holocene (8-9 ka), and the late Holocene (0-2 ka). Our records from 24 stations in the South China Sea, Timor Sea, Indonesian seas, and western Pacific indicate overall dry and cool conditions in the IPWP during the LGM with a low thermal gradient between surface and thermocline waters. During the early Holocene, sea surface temperatures increased by ~3°C over the entire region, indicating intensification of the IPWP. However, in the eastern Indian Ocean (Timor Sea), the thermocline gradually shoaled from the LGM to early Holocene, reflecting intensification of the subsurface Indonesian Throughflow (ITF). Increased surface salinity in the South China Sea during the Holocene appears related to northward displacement of the monsoonal rain belt over the Asian continent together with enhanced influx of saltier Pacific surface water through the Luzon Strait and freshwater export through the Java Sea. Opening of the freshwater portal through the Java Sea in the early Holocene led to a change in the vertical structure of the ITF from surface- to thermocline-dominated flow and to substantial freshening of Timor Sea thermocline waters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Downhole temperature and thermal conductivity measurements in core samples recovered during Legs 127 and 128 in the Japan Sea resulted in five accurate determinations of heat flow through the seafloor and accurate estimates of temperature vs. depth over the drilled sections. The heat flows measured at these sites are in excellent agreement with nearby seafloor measurements. Drilling sampled basaltic rocks that form the acoustic basement in the Yamato and Japan basins and provided biostratigraphic and isotopic estimates of the age of these basins. The preliminary age estimates are compared with predicted heat flow values for two different thermal models of the lithosphere. A heat flow determination from the crest of the Okushiri Ridge yielded an anomalously high heat flow of 156 mW/m**2. This excessive heat flow value may have resulted from frictional heating on an active reverse fault that bounds the eastern side of the Ridge. Accurate estimates of sedimentation rates and temperatures in the sedimentary section combined with models of basin formation provide an opportunity to test thermochemical models of silica diagenesis. The current location of the opal-A/opal CT transition in the sedimentary section is determined primarily by the thermal history of the layer in which the transition is now found. Comparison of the ages and temperatures of the layer where the opal-A/opal-CT is found today is compatible with an activation energy of 14 to 17 kcal/mole.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four chemically distinct basalts were cored in 44 m of basement penetration at Deep Sea Drilling Project Site 543, in Upper Cretaceous crust just seaward of the deformation front of the Barbados Ridge and north of the Tiburon Rise. All four types are moderately fractionated abyssal tholeiites. The four types have different magnetic inclinations, all of reversed polarity, suggesting eruption at different times which recorded secular variation of the earth's magnetic field. Extensive replacement of Plagioclase by K-feldspar has occurred at the top of the basalts, giving analyses with K2O contents up to 5 %. The earliest stages of alteration were dominantly oxidative, resulting in fractures lined with celadonite and dioctahedral smectite, and pervasive replacement of olivine and most intersertal glass with iron hydroxides and green clay minerals. Latef, non-oxidative alteration resulted in formation of olive-green clays and pyrite veins in a portion of the rocks. Basalts affected by this alteration actually lost K2O (to abundances lower than in adjacent fresh basalt glasses), and gained MgO (to abundances higher than in the glasses). Finally, fractures and interpillow voids were lined with calcite, sealing in much fresh glass. Oxygen-isotope measurements on the calcite indicate that this occurred at 12 to 25C. Either altering fluids were warm or the basalts had become buried with a considerable thickness of sediments, such that temperatures increased until a conductive thermal gradient was established, when the veining occurred.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many important chemical reactions occur in polar snow, where solutes may be present in several reservoirs, including at the air-ice interface and in liquid-like regions within the ice matrix. Some recent laboratory studies suggest chemical reaction rates may differ in these two reservoirs. While investigations have examined where solutes are found in natural snow and ice, similar research has not identified solute locations in laboratory samples, nor the possible factors controlling solute segregation. To address this, we examined solute locations in ice samples prepared from either aqueous cesium chloride (CsCl) or Rose Bengal solutions that were frozen using several different methods. Samples frozen in a laboratory freezer had the largest liquid-like inclusions and air bubbles, while samples frozen in a custom freeze chamber had somewhat smaller air bubbles and inclusions; in contrast, samples frozen in liquid nitrogen showed much smaller concentrated inclusions and air bubbles, only slightly larger than the resolution limit of our images (~2 µm). Freezing solutions in plastic versus glass vials had significant impacts on the sample structure, perhaps because the poor heat conductivity of plastic vials changes how heat is removed from the sample as it cools. Similarly, the choice of solute had a significant impact on sample structure, with Rose Bengal solutions yielding smaller inclusions and air bubbles compared to CsCl solutions frozen using the same method. Additional experiments using higher-resolution imaging of an ice sample show that CsCl moves in a thermal gradient, supporting the idea that the solutes in ice are present in liquid-like regions. Our work shows that the structure of laboratory ice samples, including the location of solutes, is sensitive to freezing method, sample container, and solute characteristics, requiring careful experimental design and interpretation of results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

According to the World Ocean Program in the northeastern part of the continental slope of the Black Sea geothermal, seismologic and seismic studies were carried out. An analysis of heat flow distribution allowed to distinguish a negative geothermal anomaly near the Dzhubga area, where the Russia-Turkey pipeline was being constructed. During seismological observations (August-September 1999, September 2001) more than 1200 seismic events were recorded. They proved high tectonic activity of the region under study, which stimulates gravitational sediment transport on the continental slope. The seismo-acoustic survey carried out in the area of the geothermal anomaly revealed no reflecting horizons within the sedimentary cover. This may be related to turbidite-landsliding processes. Results of modeling of the heat flow anomaly showed that it had originated approximately 1000 years ago due to a powerful landslide. This also suggests a possibility of an avalanche displacement of sedimentary masses in the area of the pipeline at present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study presents new evidence of when and how the Western Pacific Warm Pool (WPWP) was established in its present form. We analyzed planktic foraminifera, oxygen isotopes, and Mg/Ca ratios in upper Miocene through Pleistocene sediments collected at Deep Sea Drilling Program (DSDP) Site 292. These data were then compared with those reported from Ocean Drilling Program (ODP) Site 806. Both drilling sites are located in the western Pacific Ocean. DSDP Site 292 is located in the northern margin of the modern WPWP and ODP Site 806 near the center of the WPWP. Three stages of development in surface-water conditions are identified in the region using planktic foraminferal data. During the initial stage, from 8.5 to 4.4 Ma, Site 806 was overlain by warm surface water but Site 292 was not, as indicated by the differences in faunal compositions and sea-surface temperature (SST) between the two sites. In addition, the vertical thermal gradient at Site 292 was weak during this period, as indicated by the small differences in the delta18O values between Globigerinoides sacculifer and Pulleniatina spp. During stage two, from 4.4 to 3.6 Ma, the SST at Site 292 rapidly increased to 27 °C, but the vertical thermal gradient had not yet be strengthened, as shown by Mg/Ca ratios and the presence of both mixed-layer dwellers and thermocline dwellers. Finally, a warm mixed layer with a high SST ca. 28 °C and a strong vertical thermal gradient were established at Site 292 by 3.6 Ma. This event is marked by the dominance of mixed-layer dwellers, a high and stable SST, and a larger differences in the delta18O values between G. sacculifer and Pulleniatina spp. Thus, evidence of surface-water evolution in the western Pacific suggests that Site 292 came under the influence of the WPWP at 3.6 Ma. The northward expansion of the WPWP from 4.4 to 3.6 Ma and the establishment of the modern WPWP by 3.6 Ma appear to be closely related to the closure of the Indonesian and Central American seaways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geothermal data obtained during Cruise 12 of the R/V Vityaz-II and published data on heat flux of the Tyrrhenian Sea are analyzed. The thermal field is related to principal tectonic structures of the basin. Distribution of heat flux indicates that the initial stage of rifting occurs in the central basin of the Tyrrhenian Sea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyzed interstitial gases from holes at Sites 474, 477, 478, 479, and 481 in the Gulf of California, using gas chromatography and stable isotope mass spectrometry to evaluate their composition in terms of biogenic and thermogenic sources. The hydrocarbon gas (C1-C5) concentrations were comparable to the shipboard data, and no olefins could be detected. The ?13C data for the CH4 confirmed the effects of thermal stress on the sedimentary organic matter, because the values were typically biogenic near the surface and became more depleted in 12C versus depth in holes at Sites 474, 478, and 481. The CH4 at Site 477 was the heaviest, and in Hole 479 it did not show a dominant hightemperature component. The CO2 at depth in most holes was mostly thermogenic and derived from carbonates. The low concentrations of C2-C5 hydrocarbons in the headspace gas of canned sediments precluded a stable carbon-isotope analysis of their genetic origin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The disappearance at ~10 Ma of the deep dwelling planktonic foraminifer Globoquadrina dehiscens from the western Pacific including the South China Sea was about 3 Myr earlier than its final extinction elsewhere. Accompanying this event at ~10 Ma was a series of faunal turnover characterized by increase in mixed layer, warm-water species and decrease to a minimum in deepwater species. Paleobiological and isotopic evidence indicates sea surface warming and a deepened local thermocline that we interpret as related to the development of an early western Pacific warm pool. The stepwise decline of G. dehiscens and other deep dwelling species from the NW and SW Pacific suggests more intensive warm water pileup than equatorial localities where surface bypass flow through the narrowing Indonesia seaway appears to remain efficient during the late Miocene. Planktonic delta18O values from the South China Sea consistently lighter than the tropical western Pacific during the Miocene also suggest, similar to today, more variable hydrologic conditions along the periphery than in the core of the warm pool. Stronger hydrologic variability affected mainly by monsoons and increased thermal gradient along the western margin of the late Miocene warm pool may have contributed to the decline of deep dwelling planktonic species including the early extinction of G. dehiscens from the South China Sea region. The late Miocene warm pool became influential and paleobiologically detectable from ~10 Ma, but the modern warm pool did not appear until about 4 Ma, in the middle Pliocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Indian Ocean crust formed at Sites 765 and 766 is geochemically comparable to that presently forming in the Red Sea. In both cases, we interpret the crust as reflecting high degrees of mantle melting that are associated with an enhanced thermal gradient below recently rifted continental lithosphere. Asthenospheric melts formed in this environment are rich in CaO and FeO, poor in Na2O and Al2O3, and characterized by depleted rare earth element (REE) profiles ([La/Sm]n approximately 0.5-0.6). Both the Red Sea basalts and the basalts at Sites 765 and 766 are distinct from those erupted at the present Mid-Indian Ocean Ridge. The isotope characteristics of the Site 765 basalts define a geochemical signature similar to that of the present-day Mid-Indian Ocean Ridge basalts (MIORB). The Indian Ocean mantle domain is distinct from that of the Atlantic and Pacific oceans, and this distinction has persisted since Jurassic time, when the Site 765 oceanic crust was formed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Newly sampled basaltic andesites and andesites from the tholeiitic Ferrar Supergroup of northern Victoria Land and George V Land, Antarctica, are attributed to the known low-Ti and high-Ti series. Aside from known sparsely distributed high-Ti extrusives, a high-Ti sill was found in the Alamein Range outside the Rennick Graben. Low-Ti lavas, sills and dikes display wide petrographical, mineral and geochemical variations, reflecting extensive in-situ differentiation. High-Ti rocks from Litell Rocks are homogeneous with respect to mineralogy and geochemistry, minor deviations are shown by the sampled sill. Chilled margins of low-Ti sills, dikes and lava flows exhibit nearly constant bulk-rock chemistry (mg# ~60) within the studied area. Compared to chilled margins from Tasmanian sills, the striking uniformity of the pre-emplacement chemistry of Ferrar magmas over large distances supports the magma transport model of Elliot et al. (1999, doi:10.1016/S0012-821X(99)00023-0). In the area investigated, compositional variations within the low-Ti series, caused by in-situ differentiation, increase towards the Wilson-Bowers Terrane boundary, possibly displaying the asymmetrical distribution of outcrops over this area. Absence of Ferrar occurrences east of the Bowers Terrane remains a matter of palaeo-geodynamic discussion. Besides, the secondary mineralogy of extrusives from Litell Rocks and Monument Nunataks exhibits noticeable differences, which indicates an elevated thermal gradient in the vicinity of Litell Rocks compared to Monument Nunataks during the Cretaceous.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate phenomena like the monsoon system, El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are interconnected via various feedback mechanisms and control the climate of the Indian Ocean and its surrounding continents on various timescales. The eastern tropical Indian Ocean is a key area for the interplay of these phenomena and for reconstructing their past changes and forcing mechanisms. Here we present records of upper ocean thermal gradient, thermocline temperatures (TT) and relative abundances of planktic foraminifera in core SO 189-39KL taken off western Sumatra (0°47.400' S, 99°54.510' E) for the last 8 ka that we use as proxies for changes in upper ocean structure. The records suggest a deeper thermocline between 8 ka and ca 3 ka compared to the late Holocene. We find a shoaling of the thermocline after 3 ka, most likely indicating an increased occurrence of upwelling during the late Holocene compared to the mid-Holocene which might represent changes in the IOD-like mean state of the Indian Ocean with a more negative IOD-like mean state during the mid-Holocene and a more positive IOD-like mean state during the past 3 ka. This interpretation is supported by a transient Holocene climate model simulation in which an IOD-like mode is identified that involves an insolation-forced long-term trend of increasing anomalous surface easterlies over the equatorial eastern Indian Ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over a broad region of the eastern Japan Sea, Neogene opaline diatomaceous sediments alter with depth to hard porcellanites and cherts composed of opal-CT and quartz. We examined the oxygen isotopic compositions of these diagenetic silica minerals at four widely spaced sites occupied during ODP Leg 127 in order to investigate the thermal history of the region. Formation temperatures computed from these isotopic data range from 22° to 68°C for opal-CT and from 44° to 92°C for diagenetic quartz, quite similar to temperature ranges estimated from the extrapolated modern gradients, 36°-43°C and 49°-64°C, respectively. At each site the isotopic temperature values cluster near the extrapolated ambient sediment temperatures. As a first approximation, the similarities suggest that the positions of the silica transformations in the basin are controlled by the present thermal regime. In detail, isotopic and ambient temperatures differ. If these differences are real, then they reflect variations in the thermal histories at these sites. At Sites 794 and 797 in the Yamato Basin, isotopic temperatures and gradients computed from these data are lower than or comparable to ambient temperatures and gradients. We suggest that the silica zones have roughly equilibrated with the modern gradients at these localities. At Site 795 in the Japan Basin, isotopic temperatures are also lower than ambient sediment temperatures at comparable depths, but the gradient computed from the isotopic temperatures is higher than the present measured gradient. For both scenarios to hold, the silica zones must have formed under initially high gradients during the early post-rift period at this locality. These zones were then rapidly buried and have yet to equilibrate with the modern lower gradient. At Site 796 on Okushiri Ridge, isotopic temperatures exceed present temperatures as expected for an area of recent uplift. The gradient computed from our isotopic data and the thickness of the opal-CT zone indicate a higher gradient than at present at this site, apparently reflecting higher heat fluxes during the early post-rift period or recent frictional heating from nearby reverse fault activity.