991 resultados para Thermal emission


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the quasifission paths predicted by the one-body dissipation dynamics, in the slowest phase of a binary reaction, follow a quasistatic path, which represents a sequence of states of thermal equilibrium at a fixed value of the deformation coordinate. This establishes the use of the statistical particle-evaporation model in the case of dynamical time-evolving systems. Pre- and post-scission multiplicities of neutrons and total multiplicities of protons and α particles in fission reactions of 63Cu+92Mo, 60Ni+100Mo, 63Cu+100Mo at 10 MeV/u and 20Ne+144,148,154Sm at 20 MeV/u are reproduced reasonably well with statistical model calculations performed along dynamic trajectories whose slow stage (from the most compact configuration up to the point where the neck starts to develop) lasts some 35×10−21 s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aim of this in vitro experimental study was to perform histological evaluation of the thermal effect produced on soft tissue irradiated with CO2, Er,Cr:YSGG or diode lasers. Study design: Porcine oral mucosa samples were irradiated with Er,Cr:YSGG laser at 1 W with and without water / air spray, at 2 W with and without water / air spray, and at 4 W with water / air spray, with CO2 laser at 1 W, 2 W, 10 W, 20 W continuous mode and 20 W pulsed mode and diode laser at 2W, 5W, and 10W pulsed mode. The thermal effect was evaluated measuring the width of damaged tissue adjacent to the incision, stained positively for hyalinized tissue with Hematoxylin-Eosin and Masson Trichrome stains. Besides, histological changes in the irradiated tissue were described using subjective grading scales. Results: The evaluated lasers developed a wide range of thermal damage with significant differences between groups. The samples with lowest thermal effect were those irradiated with Er,Cr:YSGG laser using water / air spray, followed by CO2 and diode lasers. Conclusions: Emission parameters of each laser system may influence the thermal damage inflicted on the soft tissue, however, the wave length of each laser determines the absorption rate characteristics of every tissue and the thermal effect

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, massive protostars have turned out to be a possible population of high-energy emitters. Among the best candidates is IRAS 16547-4247, a protostar that presents a powerful outflow with clear signatures of interaction with its environment. This source has been revealed to be a potential high-energy source because it displays non-thermal radio emission of synchrotron origin, which is evidence of relativistic particles. To improve our understanding of IRAS 16547-4247 as a high-energy source, we analyzed XMM-Newton archival data and found that IRAS 16547-4247 is a hard X-ray source. We discuss these results in the context of a refined one-zone model and previous radio observations. From our study we find that it may be difficult to explain the X-ray emission as non-thermal radiation coming from the interaction region, but it might be produced by thermal Bremsstrahlung (plus photo-electric absorption) by a fast shock at the jet end. In the high-energy range, the source might be detectable by the present generation of Cherenkov telescopes, and may eventually be detected by Fermi in the GeV range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context.Massive stars form in dense and massive molecular cores. The exact formation mechanism is unclear, but it is possible that some massive stars are formed by processes similar to those that produce the low-mass stars, with accretion/ejection phenomena occurring at some point of the evolution of the protostar. This picture seems to be supported by the detection of a collimated stellar wind emanating from the massive protostar IRAS 16547-4247. A triple radio source is associated with the protostar: a compact core and two radio lobes. The emission of the southern lobe is clearly non-thermal. Such emission is interpreted as synchrotron radiation produced by relativistic electrons locally accelerated at the termination point of a thermal jet. Since the ambient medium is determined by the properties of the molecular cloud in which the whole system is embedded, we can expect high densities of particles and infrared photons. Because of the confirmed presence of relativistic electrons, inverse Compton and relativistic Bremsstrahlung interactions are unavoidable. Aims.We aim to make quantitative predictions of the spectral energy distribution of the non-thermal spots generated by massive young stellar objects, with emphasis on the particular case of IRAS 16547-4247. Methods.We study the high-energy emission generated by the relativistic electrons which produce the non-thermal radio source in IRAS 16547-4247. We also study the result of proton acceleration at the terminal shock of the thermal jet and make estimates of the secondary gamma rays and electron-positron pairs produced by pion decay. Results.We present spectral energy distributions for the southern lobe of IRAS 16547-4247, for a variety of conditions. We show that high-energy emission might be detectable from this object in the gamma-ray domain. The source may also be detectable in X-rays through long exposures with current X-ray instruments. Conclusions.Gamma-ray telescopes such as GLAST, and even ground-based Cherenkov arrays of new generation can be used to study non-thermal processes occurring during the formation of massive stars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical procedure for solving the nongray radiative transfer equation (RTE) in two-dimensional cylindrical participating media is presented. Nongray effects are treated by using a narrow-band approach. Radiative emission from CO, CO2, H2O, CH4 and soot is considered. The solution procedure is applied to study radiative heat transfer in a premixed CH4-O2, laminar, flame. Temperature, soot and IR-active species molar fraction distributions are allowed to vary in the axial direction of the flame. From the obtained results it is possible to quantify the radiative loss in the flame, as well as the importance of soot radiation as compared to gaseous radiation. Since the solution procedure is developed for a two-dimensional cylindrical geometry, it can be applied to other combustion systems such as furnaces, internal combustion engines, liquid and solid propellant combustion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report the use of the dual beam thermal lens technique as a quantitative method to determine absolute fluorescence quantum efficiency and concentration quenching of fluorescence emission from rhodamine 6G doped Poly(methyl methacrylate) (PMMA), prepared with different concentrations of the dye. A comparison of the present data with that reported in the literature indicates that the observed variation of fluorescence quantum yield with respect to the dye concentration follows a similar profile as in the earlier reported observations on rhodamine 6G in solution. The photodegradation of the dye molecules under cw laser excitation is also studied using the present method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photothermal spectroscopy is a group of high sensitivity methods used to measure optical absorption and thermal characteristics of a sample.The basis of photothermal spectroscopy is a photo-induced change in the thermal state of the sample.Light energy absorbed and not lost by subsequent emission results in sample heating.This heating results in a temperature change as well as changes in thermodynamic parameters of the sample which are related to temperature.Measurements of the temperature,pressure,or density changes that occur due to optical absorption are ultimately the basis for the photothermal spectroscopic methods.This is a more direct measure of optical absorption than optical transmission based spectroscopies.Sample heating is a direct consequence of optical absorption and so photothermal spectroscopy signals are directly dependent on light absorption.Scattering and reflection losses do not produce photothermal signals.Subsequently,photothermal spectroscopy more accurately measures optical absorption in scattering solutions,in solids,and at interfaces.This aspect makes it particularly attractive for application to surface and solid absorption studies,and studies in scattering media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the evolution of the kinetic features of the martensitic transition in a Cu-Al-Mn single crystal under thermal cycling. The use of several experimental techniques including optical microscopy, calorimetry, and acoustic emission, has enabled us to perform an analysis at multiple scales. In particular, we have focused on the analysis of avalanche events (associated with the nucleation and growth of martensitic domains), which occur during the transition. There are significant differences between the kinetics at large and small length scales. On the one hand, at small length scales, small avalanche events tend to sum to give new larger events in subsequent loops. On the other hand, at large length scales the large domains tend to split into smaller ones on thermal cycling. We suggest that such different behavior is the necessary ingredient that leads the system to the final critical state corresponding to a power-law distribution of avalanches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waves with periods shorter than the inertial period exist in the atmosphere (as inertia-gravity waves) and in the oceans (as Poincaré and internal gravity waves). Such waves owe their origin to various mechanisms, but of particular interest are those arising either from local secondary instabilities or spontaneous emission due to loss of balance. These phenomena have been studied in the laboratory, both in the mechanically-forced and the thermally-forced rotating annulus. Their generation mechanisms, especially in the latter system, have not yet been fully understood, however. Here we examine short period waves in a numerical model of the rotating thermal annulus, and show how the results are consistent with those from earlier laboratory experiments. We then show how these waves are consistent with being inertia-gravity waves generated by a localised instability within the thermal boundary layer, the location of which is determined by regions of strong shear and downwelling at certain points within a large-scale baroclinic wave flow. The resulting instability launches small-scale inertia-gravity waves into the geostrophic interior of the flow. Their behaviour is captured in fully nonlinear numerical simulations in a finite-difference, 3D Boussinesq Navier-Stokes model. Such a mechanism has many similarities with those responsible for launching small- and meso-scale inertia-gravity waves in the atmosphere from fronts and local convection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Around 40% of total energy consumption in the UK is consumed by creating comfortable indoor environment for occupants. Occupants’ behaviour in terms of achieving thermal comfort could have a significant impact on a building’s energy consumption. Therefore, understanding the interactions of occupants with their buildings would be essential to provide a thermal comfort environment that is less reliance on energy-intensive heating, ventilation and air-conditioning systems, to meet energysaving and carbon emission targets. This paper presents the findings of a year-long field study conducted in non-air-conditioned office buildings in the UK. Occupants’ adaptive responses in terms of technological and personal dimensions are dynamic processes which could vary with both indoor and outdoor thermal conditions. The adaptive behaviours of occupants in the surveyed building show substantial seasonal and daily variations. Our study shows that non-physical factors such as habit could influence the adaptive responses of occupants. However, occupants sometimes displayed inappropriate adaptive behaviour, which could lead to a misuse of energy. This paper attempts to illustrate how occupants would adapt and interact with their built environment and consequently contribute to development of a guide for future design/refurbishment of buildings and to develop energy management systems for a comfortable built environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present simultaneous multicolor infrared and optical photometry of the black hole X-ray transient XTE J1118+480 during its short 2005 January outburst, supported by simultaneous X-ray observations. The variability is dominated by short timescales, ~10 s, although a weak superhump also appears to be present in the optical. The optical rapid variations, at least, are well correlated with those in X-rays. Infrared JHKs photometry, as in the previous outburst, exhibits especially large-amplitude variability. The spectral energy distribution (SED) of the variable infrared component can be fitted with a power law of slope α=-0.78+/-0.07, where F_ν~ν^α. There is no compelling evidence for evolution in the slope over five nights, during which time the source brightness decayed along almost the same track as seen in variations within the nights. We conclude that both short-term variability and longer timescale fading are dominated by a single component of constant spectral shape. We cannot fit the SED of the IR variability with a credible thermal component, either optically thick or thin. This IR SED is, however, approximately consistent with optically thin synchrotron emission from a jet. These observations therefore provide indirect evidence to support jet-dominated models for XTE J1118+480 and also provide a direct measurement of the slope of the optically thin emission, which is impossible, based on the average spectral energy distribution alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eddy covariance has been used in urban areas to evaluate the net exchange of CO2 between the surface and the atmosphere. Typically, only the vertical flux is measured at a height 2–3 times that of the local roughness elements; however, under conditions of relatively low instability, CO2 may accumulate in the airspace below the measurement height. This can result in inaccurate emissions estimates if the accumulated CO2 drains away or is flushed upwards during thermal expansion of the boundary layer. Some studies apply a single height storage correction; however, this requires the assumption that the response of the CO2 concentration profile to forcing is constant with height. Here a full seasonal cycle (7th June 2012 to 3rd June 2013) of single height CO2 storage data calculated from concentrations measured at 10 Hz by open path gas analyser are compared to a data set calculated from a concurrent switched vertical profile measured (2 Hz, closed path gas analyser) at 10 heights within and above a street canyon in central London. The assumption required for the former storage determination is shown to be invalid. For approximately regular street canyons at least one other measurement is required. Continuous measurements at fewer locations are shown to be preferable to a spatially dense, switched profile, as temporal interpolation is ineffective. The majority of the spectral energy of the CO2 storage time series was found to be between 0.001 and 0.2 Hz (500 and 5 s respectively); however, sampling frequencies of 2 Hz and below still result in significantly lower CO2 storage values. An empirical method of correcting CO2 storage values from under-sampled time series is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate the spectra of produced thermal photons in Au + Au collisions taking into account the nonequilibrium contribution to photon production due to finite shear viscosity. The evolution of the fireball is modeled by second-order as well as by divergence-type 2 + 1 dissipative hydrodynamics, both with an ideal equation of state and with one based on Lattice QCD that includes an analytical crossover. The spectrum calculated in the divergence-type theory is considerably enhanced with respect to the one calculated in the second-order theory, the difference being entirely due to differences in the viscous corrections to photon production. Our results show that the differences in hydrodynamic formalisms are an important source of uncertainty in the extraction of the value of eta/s from measured photon spectra. The uncertainty in the value of eta/s associated with different hydrodynamic models used to compute thermal photon spectra is larger than the one occurring in matching hadron elliptic flow to RHIC data. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A statistical data analysis methodology was developed to evaluate the field emission properties of many samples of copper oxide nanostructured field emitters. This analysis was largely done in terms of Seppen-Katamuki (SK) charts, field strength and emission current. Some physical and mathematical models were derived to describe the effect of small electric field perturbations in the Fowler-Nordheim (F-N) equation, and then to explain the trend of the data represented in the SK charts. The field enhancement factor and the emission area parameters showed to be very sensitive to variations in the electric field for most of the samples. We have found that the anode-cathode distance is critical in the field emission characterization of samples having a non-rigid nanostructure. (C) 2007 Elsevier B.V. All rights reserved.