961 resultados para Thermal efficiency


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a methodology for the study of a fuel cell cogeneration system and applied to a university campus is developed. The cogeneration system consists of a molten carbonate fuel cell associated to an absorption refrigeration system. The electrical and cold-water demands of the campus are about 1,000 kW and 1,840 kW (at 7°C), respectively. The energy, exergy and economic analyses are presented. This system uses natural gas as the fuel and operates on electric parity. In conclusion, the fuel cell cogeneration system may have an excellent opportunity to strengthen the decentralized energy production in the Brazilian tertiary sector.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aims to prove the economic feasibility of the installation of mechanical compression chillers on plastic injection molding machines in order to reduce the production cycle time of toothbrush cables in a specific case study. This evidence was confirmed by the comparative analysis of the system replaced and the new system installed. The old system had only one closed loop cooling tower which pumped chilled water to the injection molds, and the new system has the same tower sending cold water to the condensers of individual chillers installed on each injection machine. We conducted an analysis of energy efficiency in each system, showing that in terms of thermal efficiency virtually nothing has changed, but in terms of electricity demand the new system consumes 60.3 kW more. We conducted an analysis of machine productivity for both systems, showing a much higher productivity of the new system due to reduced cycle times caused by the presence of chillers and their greater cooling capacities. Equipped with data such as electricity rates, increases in operating costs and initial investments, the increase in consumption and demand of electricity plus the cycle time reduction were also calculated over so the simple payback 1 year and 2 months was reached

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the growing world energy demand mainly from developing countries like Brazil, Russia, India and China, the search for efficient sources of energy becomes a challenge for the coming years. Among the most widely used alternative sources, biomass is the one that grows in a more pronounced way. This study will assess the real possibility of having it as a heat source in an Organic Rankine Cycle, which employ heat transfer fluids as working fluids instead of water. From a regional data collection in agricultural production and their potential rice production and the resulting husk was defined as more appropriate. The availability of husks together with an amount of eucalyptus wood, provided by a company in the region on a monthly basis, were analyzed, and the low participation of the wood was discarded by the thermal contribution of little significance. Based on this, it was established the calorific value of fuel for thermodynamic calculations and the cycle to be used. It was then carried out the choice of working fluid from the literature and their availability in the library of software used for the simulations, the Engineering Equation Solver - ESS. The fluid most appropriate for the burning of biomass, Octamethyltrisiloxane (OMTS), was not included in the software and so the R227ea and R134a were selected. After the initial parameters modeling definition, as condensing temperature, efficiency and live steam conditions, the simulations were performed, and only the R227ea remained within the feasible thermodynamic and technological ranges. With this fluid the turbine power output was 265.7 [kW] for a scenario of 24 hours/day burning, 800.3 [kW] to biomass burning for 8 hours/day and 2134 [kW] for burning only 3 hours/day. The thermal efficiency of the cycle remained in the range of 6%, and for plants operating with the most... (Complete Abstract click eletronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mathematical model is developed for an irreversible Brayton cycle with regeneration, inter-cooling and reheating. The irreversibility are from the thermal resistance in the heat exchangers, the pressure drops in pipes, the non-isentropic behavior in the adiabatic expansions and compressions and the heat leakage to the cold source. The cycle is optimized by maximizing the ecological function, which is achieved by the search for optimal values for the temperatures of the cycle and for the pressure ratios of the first stage compression and the first stage expansion. The advantages of using the regenerator, intercooler and reheater are presented by comparison with cycles that do not incorporate one or more of these processes. Optimization results are compared with those obtained by maximizing the power output and it is concluded that the point of maximum ecological function has major advantages with respect to the entropy generation rate and the thermal efficiency, at the cost of a small loss in power.