950 resultados para Therapeutic Drug Monitoring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Therapeutic drug monitoring (TDM), i. e., the quantification of serum or plasma concentrations of medications for dose optimization, has proven a valuable tool for the patient-matched psychopharmacotherapy. Uncertain drug adherence, suboptimal tolerability, non-response at therapeutic doses, or pharmacokinetic drug-drug interactions are typical situations when measurement of medication concentrations is helpful. Patient populations that may predominantly benefit from TDM in psychiatry are children, pregnant women, elderly patients, individuals with intelligence disabilities, forensic patients, patients with known or suspected genetically determined pharmacokinetic abnormalities or individuals with pharmacokinetically relevant comorbidities. However, the potential benefits of TDM for optimization of pharmacotherapy can only be obtained if the method is adequately integrated into the clinical treatment process. To promote an appropriate use of TDM, the TDM expert group of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) issued guidelines for TDM in psychiatry in 2004. Since then, knowledge has advanced significantly, and new psychopharmacologic agents have been introduced that are also candidates for TDM. Therefore the TDM consensus guidelines were updated and extended to 128 neuropsychiatric drugs. 4 levels of recommendation for using TDM were defined ranging from "strongly recommended" to "potentially useful". Evidence-based "therapeutic reference ranges" and "dose related reference ranges" were elaborated after an extensive literature search and a structured internal review process. A "laboratory alert level" was introduced, i. e., a plasma level at or above which the laboratory should immediately inform the treating physician. Supportive information such as cytochrome P450 substrate- and inhibitor properties of medications, normal ranges of ratios of concentrations of drug metabolite to parent drug and recommendations for the interpretative services are given. Recommendations when to combine TDM with pharmacogenetic tests are also provided. Following the guidelines will help to improve the outcomes of psychopharmacotherapy of many patients especially in case of pharmacokinetic problems. Thereby, one should never forget that TDM is an interdisciplinary task that sometimes requires the respectful discussion of apparently discrepant data so that, ultimately, the patient can profit from such a joint effort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In October 2011 the Task Force Therapeutic Drug Monitoring of the Association for Neuropsychopharmacology and Pharmacopsychiatry (AGNP) published an update (Pharmacopsychiatry 2011, 44: 195-235) of the first version of the consensus paper on therapeutic drug monitoring (TDM) published in 2004. This article summarizes the essential statements to make them accessible to a wider readership in German speaking countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five selective serotonin reuptake inhibitors (SSRIs) have been introduced recently: citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline. Although no therapeutic window has been defined for SSRIs, in contrast to tricyclic antidepressants, analytical methods for therapeutic drug monitoring of SSRIs are useful in several instances. SSRIs differ widely in their chemical structure and in their metabolism. The fact that some of them have N-demethylated metabolites, which are also SSRIs, requires that methods be available which allow therapeutic drug monitoring of the parent compounds and of these active metabolites. most procedures are based on prepurification of the SSRIs by liquid-liquid extraction before they are submitted to separation by chromatographic procedures (high-performance liquid chromatography, gas chromatography, thin layer chromatography) and detection by various detectors (UV, fluorescence, electrochemical detector, nitrogen-phosphorus detector, mass spectrometry). This literature review shows that most methods allow quantitative determination of SSRIs in plasma, in the lower ng/ml range, and that they are, therefore, suitable for therapeutic drug monitoring purposes of this category of drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: As imatinib pharmacokinetics are highly variable, plasma levels differ largely between patients under the same dosage. Retrospective studies in chronic myeloid leukemia (CML) patients showed significant correlations between low levels and suboptimal response, and between high levels and poor tolerability. Monitoring of plasma levels is thus increasingly advised, targeting trough concentrations of 1000 μg/L and above. Objectives: Our study was launched to assess the clinical usefulness of systematic imatinib TDM in CML patients. The present preliminary evaluation questions the appropriateness of dosage adjustment following plasma level measurement to reach the recommended trough level, while allowing an interval of 4-24 h after last drug intake for blood sampling. Methods: Initial blood samples from the first 9 patients in the intervention arm were obtained 4-25 h after last dose. Trough levels in 7 patients were predicted to be significantly away from the target (6 <750 μg/L, and 1 >1500 μg/L with poor tolerance), based on a Bayesian approach using a population pharmacokinetic model. Individual dosage adjustments were taken up in 5 patients, who had a control measurement 1-4 weeks after dosage change. Predicted trough levels were confronted to anterior model-based extrapolations. Results: Before dosage adjustment, observed concentrations extrapolated at trough ranged from 359 to 1832 μg/L (median 710; mean 804, CV 53%) in the 9 patients. After dosage adjustment they were expected to target between 720 and 1090 μg/L (median 878; mean 872, CV 13%). Observed levels of the 5 recheck measurements extrapolated at trough actually ranged from 710 to 1069 μg/L (median 1015; mean 950, CV 16%) and had absolute differences of 21 to 241 μg/L to the model-based predictions (median 175; mean 157, CV 52%). Differences between observed and predicted trough levels were larger when intervals between last drug intake and sampling were very short (~4 h). Conclusion: These preliminary results suggest that TDM of imatinib using a Bayesian interpretation is able to bring trough levels closer to 1000 μg/L (with CV decreasing from 53% to 16%). While this may simplify blood collection in daily practice, as samples do not have to be drawn exactly at trough, the largest possible interval to last drug intake yet remains preferable. This encourages the evaluation of the clinical benefit of a routine TDM intervention in CML patients, which the randomized Swiss I-COME study aims to.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Adequate empirical antibiotic dose selection for critically ill burn patients is difficult due to extreme variability in drug pharmacokinetics. Therapeutic drug monitoring (TDM) may aid antibiotic prescription and implementation of initial empirical antimicrobial dosage recommendations. This study evaluated how gradual TDM introduction altered empirical dosages of meropenem and imipenem/cilastatin in our burn ICU. METHODS: Imipenem/cilastatin and meropenem use and daily empirical dosage at a five-bed burn ICU were analyzed retrospectively. Data for all burn admissions between 2001 and 2011 were extracted from the hospital's computerized information system. For each patient receiving a carbapenem, episodes of infection were reviewed and scored according to predefined criteria. Carbapenem trough serum levels were characterized. Prior to May 2007, TDM was available only by special request. Real-time carbapenem TDM was introduced in June 2007; it was initially available weekly and has been available 4 days a week since 2010. RESULTS: Of 365 patients, 229 (63%) received antibiotics (109 received carbapenems). Of 23 TDM determinations for imipenem/cilastatin, none exceeded the predefined upper limit and 11 (47.8%) were insufficient; the number of TDM requests was correlated with daily dose (r=0.7). Similar numbers of inappropriate meropenem trough levels (30.4%) were below and above the upper limit. Real-time TDM introduction increased the empirical dose of imipenem/cilastatin, but not meropenem. CONCLUSIONS: Real-time carbapenem TDM availability significantly altered the empirical daily dosage of imipenem/cilastatin at our burn ICU. Further studies are needed to evaluate the individual impact of TDM-based antibiotic adjustment on infection outcomes in these patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variability observed in drug exposure has a direct impact on the overall response to drug. The largest part of variability between dose and drug response resides in the pharmacokinetic phase, i.e. in the dose-concentration relationship. Among possibilities offered to clinicians, Therapeutic Drug Monitoring (TDM; Monitoring of drug concentration measurements) is one of the useful tool to guide pharmacotherapy. TDM aims at optimizing treatments by individualizing dosage regimens based on blood drug concentration measurement. Bayesian calculations, relying on population pharmacokinetic approach, currently represent the gold standard TDM strategy. However, it requires expertise and computational assistance, thus limiting its large implementation in routine patient care. The overall objective of this thesis was to implement robust tools to provide Bayesian TDM to clinician in modern routine patient care. To that endeavour, aims were (i) to elaborate an efficient and ergonomic computer tool for Bayesian TDM: EzeCHieL (ii) to provide algorithms for drug concentration Bayesian forecasting and software validation, relying on population pharmacokinetics (iii) to address some relevant issues encountered in clinical practice with a focus on neonates and drug adherence. First, the current stage of the existing software was reviewed and allows establishing specifications for the development of EzeCHieL. Then, in close collaboration with software engineers a fully integrated software, EzeCHieL, has been elaborated. EzeCHieL provides population-based predictions and Bayesian forecasting and an easy-to-use interface. It enables to assess the expectedness of an observed concentration in a patient compared to the whole population (via percentiles), to assess the suitability of the predicted concentration relative to the targeted concentration and to provide dosing adjustment. It allows thus a priori and a posteriori Bayesian drug dosing individualization. Implementation of Bayesian methods requires drug disposition characterisation and variability quantification trough population approach. Population pharmacokinetic analyses have been performed and Bayesian estimators have been provided for candidate drugs in population of interest: anti-infectious drugs administered to neonates (gentamicin and imipenem). Developed models were implemented in EzeCHieL and also served as validation tool in comparing EzeCHieL concentration predictions against predictions from the reference software (NONMEM®). Models used need to be adequate and reliable. For instance, extrapolation is not possible from adults or children to neonates. Therefore, this work proposes models for neonates based on the developmental pharmacokinetics concept. Patients' adherence is also an important concern for drug models development and for a successful outcome of the pharmacotherapy. A last study attempts to assess impact of routine patient adherence measurement on models definition and TDM interpretation. In conclusion, our results offer solutions to assist clinicians in interpreting blood drug concentrations and to improve the appropriateness of drug dosing in routine clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New oral targeted anticancer therapies are revolutionizing cancer treatment by transforming previously deadly malignancies into chronically manageable conditions. Nevertheless, drug resistance, persistence of cancer stem cells, and adverse drug effects still limit their ability to stabilize or cure malignant diseases in the long term. Response to targeted anticancer therapy is influenced by tumor genetics and by variability in drug concentrations. However, despite a significant inter-patient pharmacokinetic variability, targeted anticancer drugs are essentially licensed at fixed doses. Their therapeutic use could however be optimized by individualization of their dosage, based on blood concentration measurements via the therapeutic drug monitoring (TDM). TDM can increase the probability of therapeutic responses to targeted anticancer therapies, and would help minimize the risk of major adverse reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Great strides have been made in the last few years in the pharmacological treatment of neuropsychiatric disorders, with the introduction into the therapy of several new and more efficient agents, which have improved the quality of life of many patients. Despite these advances, a large percentage of patients is still considered “non-responder” to the therapy, not drawing any benefits from it. Moreover, these patients have a peculiar therapeutic profile, due to the very frequent application of polypharmacy, attempting to obtain satisfactory remission of the multiple aspects of psychiatric syndromes. Therapy is heavily individualised and switching from one therapeutic agent to another is quite frequent. One of the main problems of this situation is the possibility of unwanted or unexpected pharmacological interactions, which can occur both during polypharmacy and during switching. Simultaneous administration of psychiatric drugs can easily lead to interactions if one of the administered compounds influences the metabolism of the others. Impaired CYP450 function due to inhibition of the enzyme is frequent. Other metabolic pathways, such as glucuronidation, can also be influenced. The Therapeutic Drug Monitoring (TDM) of psychotropic drugs is an important tool for treatment personalisation and optimisation. It deals with the determination of parent drugs and metabolites plasma levels, in order to monitor them over time and to compare these findings with clinical data. This allows establishing chemical-clinical correlations (such as those between administered dose and therapeutic and side effects), which are essential to obtain the maximum therapeutic efficacy, while minimising side and toxic effects. It is evident the importance of developing sensitive and selective analytical methods for the determination of the administered drugs and their main metabolites, in order to obtain reliable data that can correctly support clinical decisions. During the three years of Ph.D. program, some analytical methods based on HPLC have been developed, validated and successfully applied to the TDM of psychiatric patients undergoing treatment with drugs belonging to following classes: antipsychotics, antidepressants and anxiolytic-hypnotics. The biological matrices which have been processed were: blood, plasma, serum, saliva, urine, hair and rat brain. Among antipsychotics, both atypical and classical agents have been considered, such as haloperidol, chlorpromazine, clotiapine, loxapine, risperidone (and 9-hydroxyrisperidone), clozapine (as well as N-desmethylclozapine and clozapine N-oxide) and quetiapine. While the need for an accurate TDM of schizophrenic patients is being increasingly recognized by psychiatrists, only in the last few years the same attention is being paid to the TDM of depressed patients. This is leading to the acknowledgment that depression pharmacotherapy can greatly benefit from the accurate application of TDM. For this reason, the research activity has also been focused on first and second-generation antidepressant agents, like triciclic antidepressants, trazodone and m-chlorophenylpiperazine (m-cpp), paroxetine and its three main metabolites, venlafaxine and its active metabolite, and the most recent antidepressant introduced into the market, duloxetine. Among anxiolytics-hypnotics, benzodiazepines are very often involved in the pharmacotherapy of depression for the relief of anxious components; for this reason, it is useful to monitor these drugs, especially in cases of polypharmacy. The results obtained during these three years of Ph.D. program are reliable and the developed HPLC methods are suitable for the qualitative and quantitative determination of CNS drugs in biological fluids for TDM purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemotherapeutic drug 5-fluorouracil (5-FU) is widely used for treating solid tumors. Response to 5-FU treatment is variable with 10-30% of patients experiencing serious toxicity partly explained by reduced activity of dihydropyrimidine dehydrogenase (DPD). DPD converts endogenous uracil (U) into 5,6-dihydrouracil (UH(2) ), and analogously, 5-FU into 5-fluoro-5,6-dihydrouracil (5-FUH(2) ). Combined quantification of U and UH(2) with 5-FU and 5-FUH(2) may provide a pre-therapeutic assessment of DPD activity and further guide drug dosing during therapy. Here, we report the development of a liquid chromatography-tandem mass spectrometry assay for simultaneous quantification of U, UH(2) , 5-FU and 5-FUH(2) in human plasma. Samples were prepared by liquid-liquid extraction with 10:1 ethyl acetate-2-propanol (v/v). The evaporated samples were reconstituted in 0.1% formic acid and 10 μL aliquots were injected into the HPLC system. Analyte separation was achieved on an Atlantis dC(18) column with a mobile phase consisting of 1.0 mm ammonium acetate, 0.5 mm formic acid and 3.3% methanol. Positively ionized analytes were detected by multiple reaction monitoring. The analytical response was linear in the range 0.01-10 μm for U, 0.1-10 μm for UH(2) , 0.1-75 μm for 5-FU and 0.75-75 μm for 5-FUH(2) , covering the expected concentration ranges in plasma. The method was validated following the FDA guidelines and applied to clinical samples obtained from ten 5-FU-treated colorectal cancer patients. The present method merges the analysis of 5-FU pharmacokinetics and DPD activity into a single assay representing a valuable tool to improve the efficacy and safety of 5-FU-based chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of a robust assay based on MEKC for cefepime in human serum and plasma with internal quality assurance is reported. Sample preparation comprises protein precipitation in the presence of SDS at pH 4.5. This is a gentle approach for which decomposition of cefepime during sample handling is negligible. After hydrodynamic sample injection of the supernatant, analysis occurs in a phosphate/borate buffer at pH 9.1 with 75 mM SDS using normal polarity and analyte detection at 257 nm. The MEKC run time interval and throughput are about 5 min and seven samples per hour, respectively. The calibration range for cefepime is 1-60 μg/mL, with 1 μg/mL being the LOQ. The performance of the assay with multilevel internal calibration was assessed with calibration and control samples. The assay is shown to be simple, inexpensive, reproducible, and robust. It was applied to determine cefepime levels in the sera of critically ill patients and to assess the instability of cefepime in patient and control samples. Our data revealed that serum containing cefepime can be stored at -20°C for a short time, whereas for long-term storage, samples have to be kept at -70°C.