960 resultados para The genetic code
Resumo:
BACKGROUND: Transgressive segregation describes the occurrence of novel phenotypes in hybrids with extreme trait values not observed in either parental species. A previously experimentally untested prediction is that the amount of transgression increases with the genetic distance between hybridizing species. This follows from QTL studies suggesting that transgression is most commonly due to complementary gene action or epistasis, which become more frequent at larger genetic distances. This is because the number of QTLs fixed for alleles with opposing signs in different species should increase with time since speciation provided that speciation is not driven by disruptive selection. We measured the amount of transgression occurring in hybrids of cichlid fish bred from species pairs with gradually increasing genetic distances and varying phenotypic similarity. Transgression in multi-trait shape phenotypes was quantified using landmark-based geometric morphometric methods. RESULTS: We found that genetic distance explained 52% and 78% of the variation in transgression frequency in F1 and F2 hybrids, respectively. Confirming theoretical predictions, transgression when measured in F2 hybrids, increased linearly with genetic distance between hybridizing species. Phenotypic similarity of species on the other hand was not related to the amount of transgression. CONCLUSION: The commonness and ease with which novel phenotypes are produced in cichlid hybrids between unrelated species has important implications for the interaction of hybridization with adaptation and speciation. Hybridization may generate new genotypes with adaptive potential that did not reside as standing genetic variation in either parental population, potentially enhancing a population's responsiveness to selection. Our results make it conceivable that hybridization contributed to the rapid rates of phenotypic evolution in the large and rapid adaptive radiations of haplochromine cichlids.
Resumo:
The generation of patient-specific induced pluripotent stem cells (iPSCPSCPSCs) offers unprecedented opportunities for modeling and treating human disease. In combination with gene therapy, the iPSCPSCPSC technology can be used to generate disease-free progenitor cells of potential interest for autologous cell therapy. We explain a protocol for the reproducible generation of genetically corrected iPSCPSCPSCs starting from the skin biopsies of Fanconi anemia patients using retroviral transduction with OCT4, SOX2 and KLF4. Before reprogramming, the fibroblasts and/or keratinocytes of the patients are genetically corrected with lentiviruses expressing FANCA. The same approach may be used for other diseases susceptible to gene therapy correction. Genetically corrected, characterized lines of patient-specific iPSCPSCPSCs can be obtained in 4–5 months.
Resumo:
Studies of large sets of SNP data have proven to be a powerful tool in the analysis of the genetic structure of human populations. In this work, we analyze genotyping data for 2,841 SNPs in 12 Sub-Saharan African populations, including a previously unsampled region of south-eastern Africa (Mozambique). We show that robust results in a world-wide perspective can be obtained when analyzing only 1,000 SNPs. Our main results both confirm the results of previous studies, and show new and interesting features in Sub-Saharan African genetic complexity. There is a strong differentiation of Nilo-Saharans, much beyond what would be expected by geography. Hunter-gatherer populations (Khoisan and Pygmies) show a clear distinctiveness with very intrinsic Pygmy (and not only Khoisan) genetic features. Populations of the West Africa present an unexpected similarity among them, possibly the result of a population expansion. Finally, we find a strong differentiation of the south-eastern Bantu population from Mozambique, which suggests an assimilation of a pre-Bantu substrate by Bantu speakers in the region.
Resumo:
Time scale parametric spike train distances like the Victor and the van Rossum distancesare often applied to study the neural code based on neural stimuli discrimination.Different neural coding hypotheses, such as rate or coincidence coding,can be assessed by combining a time scale parametric spike train distance with aclassifier in order to obtain the optimal discrimination performance. The time scalefor which the responses to different stimuli are distinguished best is assumed to bethe discriminative precision of the neural code. The relevance of temporal codingis evaluated by comparing the optimal discrimination performance with the oneachieved when assuming a rate code.We here characterize the measures quantifying the discrimination performance,the discriminative precision, and the relevance of temporal coding. Furthermore,we evaluate the information these quantities provide about the neural code. Weshow that the discriminative precision is too unspecific to be interpreted in termsof the time scales relevant for encoding. Accordingly, the time scale parametricnature of the distances is mainly an advantage because it allows maximizing thediscrimination performance across a whole set of measures with different sensitivitiesdetermined by the time scale parameter, but not due to the possibility toexamine the temporal properties of the neural code.
Resumo:
Background Geleophysic dysplasia (GD, OMIM 231050) is an autosomal recessive disorder characterised by short stature, small hands and feet, stiff joints, and thick skin. Patients often present with a progressive cardiac valvular disease which can lead to an early death. In a previous study including six GD families, we have mapped the disease gene on chromosome 9q34.2 and identified mutations in the A Disintegrin And Metalloproteinase with Thrombospondin repeats-like 2 gene (ADAMTSL2). Methods Following this study, we have collected the samples of 30 additional GD families, including 33 patients and identified ADAMTSL2 mutations in 14/33 patients, comprising 13 novel mutations. The absence of mutation in 19 patients prompted us to compare the two groups of GD patients, namely group 1, patients with ADAMTSL2 mutations (n=20, also including the 6 patients from our previous study), and group 2, patients without ADAMTSL2 mutations (n=19). Results The main discriminating features were facial dysmorphism and tip-toe walking, which were almost constantly observed in group 1. No differences were found concerning heart involvement, skin thickness, recurrent respiratory and ear infections, bronchopulmonary insufficiency, laryngo-tracheal stenosis, deafness, and radiographic features. Conclusions It is concluded that GD is a genetically heterogeneous condition. Ongoing studies will hopefully lead to the identification of another disease gene.
Resumo:
The emergence of host-races within aphids may constitute an obstacle to pest management by means of plant resistance. There are examples of host-races within cereals aphids, but their occurrence in Rose Grain Aphid, Metopolophium dirhodum (Walker, 1849), has not been reported yet. In this work, RAPD markers were used to assess effects of the hosts and geographic distance on the genetic diversity of M. dirhodum lineages. Twenty-three clones were collected on oats and wheat in twelve localitites of southern Brazil. From twenty-seven primers tested, only four primers showed polymorphisms. Fourteen different genotypes were revealed by cluster analysis. Five genotypes were collected only on wheat; seven only on oats and two were collected in both hosts. Genetic and geographical distances among all clonal lineages were not correlated. Analysis of molecular variance showed that some molecular markers are not randomly distributed among clonal lineages collected on oats and on wheat. These results suggest the existence of host-races within M. dirhodum, which should be further investigated using a combination of ecological and genetic data.
Resumo:
Genetic relatedness of the mound-building ant Formica pratensis was determined by means of microsatellite DNA polymorphism, and its impact on nestmate recognition was tested in a population in Southern Sweden (Oeland). Recognition between nests was measured by testing aggression levels between single pairs of workers. The genetic distances of nests (Nei's genetic distance) and the spatial distance of nests were correlated and both showed a strong relation to the aggression behavior. Multiple regression analysis revealed a stronger impact of genetic relatedness rather than spatial distances on aggression behavior. Neighbouring nests were more closely related than distant nests, which may reflect budding as a possible spreading mechanism. The genetic distance data showed that nestmate recognition was strongly genetically influenced in F. pratensis.
Resumo:
Whether or not species participating in specialized and obligate interactions display similar and simultaneous demographic variations at the intraspecific level remains an open question in phylogeography. In the present study, we used the mutualistic nursery pollination occurring between the European globeflower Trollius europaeus and its specialized pollinators in the genus Chiastocheta as a case study. Explicitly, we investigated if the phylogeographies of the pollinating flies are significantly different from the expectation under a scenario of plant-insect congruence. Based on a large-scale sampling, we first used mitochondrial data to infer the phylogeographical histories of each fly species. Then, we defined phylogeographical scenarios of congruence with the plant history, and used maximum likelihood and Bayesian approaches to test for plant-insect phylogeographical congruence for the three Chiastocheta species. We show that the phylogeographical histories of the three fly species differ. Only Chiastocheta lophota and Chiastocheta dentifera display strong spatial genetic structures, which do not appear to be statistically different from those expected under scenarios of phylogeographical congruence with the plant. The results of the present study indicate that the fly species responded in independent and different ways to shared evolutionary forces, displaying varying levels of congruence with the plant genetic structure
Resumo:
The contribution of genes, environment and gene-environment interactions to sleep disorders is increasingly recognized. Well-documented familial and twin sleep disorder studies suggest an important influence of genetic factors. However, only few sleep disorders have an established genetic basis including four rare diseases that may result from a single gene mutation: fatal familial insomnia, familial advanced sleep-phase syndrome, chronic primary insomnia, and narcolepsy with cataplexy. However, most sleep disorders are complex in terms of their genetic susceptibility together with the variable expressivity of the phenotype even within a same family. Recent linkage, genome-wide and candidate gene association studies resulted in the identification of gene mutations, gene localizations, or evidence for susceptibility genes and/or loci in several sleep disorders. Molecular techniques including mainly genome-wide linkage and association studies are further required to identify the contribution of new genes. These identified susceptibility genetic determinants will provide clues to better understand pathogenesis of sleep disorders, to assess the risk for diseases and also to find new drug targets to treat and to prevent the underlying conditions. We reviewed here the role of genetic basis in most of key sleep disorders.
Resumo:
The "50 States Project" is the name given to President Ronald D. Reagan;s 1981 pledge to encourage the fifty governors to initiate individual state projects to review their state Codes for unequal treatment of persons based upon sex. We believe that Iowa is the first state to complete this project. Project efforts in Iowa began in June of 1981, when the Governor Robert D. ray appointed Dr. Patricia L. Geadelmann, Chairperson on the Iowa commission on the Status of Women, as Iowa's 50 State Project representative. A 50 States planning committee was formed consisting of members from the Governor Ray's staff, the Iowa Commission on the Status of Women, and the Iowa Legislature. Various alternatives for reviewing the Iowa code and the Iowa Administrative Rules were studied and recommendations of the group were reported to Governor Terry E. Branstad prior to his inauguration.
Resumo:
Sequence data from regions of five vertebrate vitellogenin genes were used to examine the frequency, distribution, and mutability of the dinucleotide CpG, the preferred modification site for eukaryotic DNA methyltransferases. The observed level of the CpG dinucleotide in all five genes was markedly lower than that expected from the known mononucleotide frequencies. CpG suppression was greater in introns than in exons. CpG-containing codons were found to be avoided in the vitellogenin genes, but not completely despite the redundancy of the genetic code. Frequency and distribution patterns of this dinucleotide varied dramatically among these otherwise closely related genes. Dense clusters of CpG dinucleotides tended to appear in regions of either functional or structural interest (e.g., in the transposon-like Vi-element of Xenopus) and these clusters contained 5-methylcytosine (5 mC). 5 mC is known to undergo deamination to form thymidine, but the extent to which this transition occurs in the heavily methylated genomes of vertebrates and its contribution to CpG suppression are still unclear. Sequence comparison of the methylated vitellogenin gene regions identified C----T and G----A substitutions that were found to occur at relatively high frequencies. The predicted products of CpG deamination, TpG and CpA, were elevated. These findings are consistent with the view that CpG distribution and methylation are interdependent and that deamination of 5 mC plays an important role in promoting evolutionary change at the nucleotide sequence level.
Resumo:
The common shrew (Sorex araneus) is subdivided into numerous chromosome races. The Valais and Cordon chromosome races meet and hybridize at a mountain river in Les Houches (French Alps). Significant genetic structuring was recently reported among populations found on the Valais side of this hybrid zone. In this paper, a phylogenetic analysis and partial Mantel tests are used to investigate the patterns and causes of this structuring. A total of 185 shrews were trapped at 12 localities. All individuals were typed for nine microsatellite loci. Although several mountain rivers are found in the study area, riverine barriers do not have a significant influence on gene flow. Partial Mantel tests show that our result is caused by the influence of the hybrid zone with the Cordon race. The geographical patterns of this structuring are discussed in the context of the contact zone, which appears to extend up to a group of two rivers. The glacier they originate from is known to have cut the Arve valley as recently as 1818. The recent history of this glacier, its moraine and possibly rivers, may therefore be linked to the history of this hybrid zone.
Resumo:
A range of models describing metapopulations is surveyed and their implications for conservation biology are described. An overview of the use of both population genetic elements and demographic theory in metapopulation models is given. It would appear that most of the current models suffer from either the use of over-simplified demography or the avoidance of selectively important genetic factors. The scale for which predictions are made by the various models is often obscure. A conceptual framework for describing metapopulations by utilising the concept of fitness of local populations is provided and some examples are given. The expectation that any general theory, such as that of metapopulations, can make useful predictions for particular problems of conservation is examined and compared with the prevailing 'state of the art' recommendations.