951 resultados para The Collector


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse de doctorat analyse les processus et les actions des consommateurs de pornographie juvénile. Nous soutenons que l’univers des collectionneurs de pornographie juvénile se distingue par trois particularités : la préférence sexuelle, l’offre pornographique dans un monde immatériel et la sociabilité virtuelle. Afin de mettre cette thèse à l’épreuve, nous avons eu accès aux disques durs de 40 personnes condamnées pour des infractions de pornographie juvénile. La méthode de l’analyse informatique judiciaire (computer forensics) utilisée dans ce contexte a permis de recréer les événements entourant la collection d’images par ces personnes. De plus, un échantillon des images possédées par ces individus a été catégorisé selon l’âge et les actes posés sur les images (n = 61 244). En plus des nombreux points qu’il a en commun avec les collectionneurs d’objets populaires, les résultats montrent l’importance de la préférence sexuelle dans la perception et les stratégies du collectionneur, l’omniprésence des images de pornographie adulte dans les collections et la sociabilité virtuelle comme mesure d’efficacité dans la découverte des contenus. En outre, en créant quatre groupes différents en fonction de l’évolution de la gravité des images dans le temps, nous avons découvert que le groupe où il y a aggravation à la fois dans l’âge et dans la gravité des actes posés est le groupe le plus nombreux, avec 37,5 % des sujets. Les résultats de l’étude mettent également en évidence la pertinence de l’utilisation de l’informatique judiciaire dans les études en criminologie.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, the author has designed and developed all types of solar air heaters called porous and nonporous collectors. The developed solar air heaters were subjected to different air mass flow rates in order to standardize the flow per unit area of the collector. Much attention was given to investigate the performance of the solar air heaters fitted with baffles. The output obtained from the experiments on pilot models, helped the installation of solar air heating system for industrial drying applications also. Apart from these, various types of solar dryers, for small and medium scale drying applications, were also built up. The feasibility of ‘latent heat thermal energy storage system’ based on Phase Change Material was also undertaken. The application of solar greenhouse for drying industrial effluent was analyzed in the present study and a solar greenhouse was developed. The effectiveness of Computational Fluid Dynamics (CFD) in the field of solar air heaters was also analyzed. The thesis is divided into eight chapters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cluster based protocols like LEACH were found best suited for routing in wireless sensor networks. In mobility centric environments some improvements were suggested in the basic scheme. LEACH-Mobile is one such protocol. The basic LEACH protocol is improved in the mobile scenario by ensuring whether a sensor node is able to communicate with its cluster head. Since all the nodes, including cluster head is moving it will be better to elect a node as cluster head which is having less mobility related to its neighbours. In this paper, LEACH-Mobile protocol has been enhanced based on a mobility metric “remoteness” for cluster head election. This ensures high success rate in data transfer between the cluster head and the collector nodes even though nodes are moving. We have simulated and compared our LEACH-Mobile-Enhanced protocol with LEACHMobile. Results show that inclusion of neighbouring node information improves the routing protocol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cluster based protocols like LEACH were found best suited for routing in wireless sensor networks. In mobility centric environments some improvements were suggested in the basic scheme. LEACH-Mobile is one such protocol. The basic LEACH protocol is improved in the mobile scenario by ensuring whether a sensor node is able to communicate with its cluster head. Since all the nodes, including cluster head is moving it will be better to elect a node as cluster head which is having less mobility related to its neighbours. In this paper, LEACH-Mobile protocol has been enhanced based on a mobility metric “remoteness” for cluster head election. This ensures high success rate in data transfer between the cluster head and the collector nodes even though nodes are moving. We have simulated and compared our LEACH-Mobile-Enhanced protocol with LEACHMobile. Results show that inclusion of neighbouring node information improves the routing protocol.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We explore the influence of a rotating collector on the internal structure of poly(ε-caprolactone) fibres electrospun from a solution in dichloroethane. We find that above a threshold collector speed, the mean fibre diameter reduces as the speed increases and the fibres are further extended. Small-angle and wide-angle X-ray scattering techniques show a preferred orientation of the lamellar crystals normal to the fibre axis which increases with collector speed to a maximum and then reduces. We have separated out the processes of fibre alignment on the collector and the orientation of crystals within the fibres. There are several stages to this behaviour which correspond to the situations (a) where the collector speed is slower than the fibre spinning rate, (b) the fibre is mechanically extended by the rotating collector and (c) where the deformation leads to fibre fracture. The mechanical deformation leads to a development of preferred orientation with extension which is similar to the prediction of the pseudo-affine deformation model and suggests that the deformation takes place during the spinning process after the crystals have formed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Compared to other volatile carbonylic compounds present in outdoor air, formaldehyde (CH2O) is the most toxic, deserving more attention in terms of indoor and outdoor air quality legislation and control. The analytical determination of CH2O in air still presents challenges due to the low-level concentration (in the sub-ppb range) and its variation with sampling site and time. Of the many available analytical methods for carbonylic compounds, the most widespread one is the time consuming collection in cartridges impregnated with 2,4-dinitrophenylhydrazine followed by the analysis of the formed hydrazones by HPLC. The present work proposes the use of polypropylene hollow porous capillary fibers to achieve efficient CH2O collection. The Oxyphan (R) fiber (designed for blood oxygenation) was chosen for this purpose because it presents good mechanical resistance, high density of very fine pores and high ratio of collection area to volume of the acceptor fluid in the tube, all favorable for the development of air sampling apparatus. The collector device consists of a Teflon pipe inside of which a bundle of polypropylene microporous capillary membranes was introduced. While the acceptor passes at a low flow rate through the capillaries, the sampled air circulates around the fibers, impelled by a low flow membrane pump (of the type used for aquariums ventilation). The coupling of this sampling technique with the selective and quantitative determination of CH2O, in the form of hydroxymethanesulfonate (HMS) after derivatization with HSO3-, by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-(CD)-D-4) enabled the development of a complete analytical protocol for the CH2O evaluation in air. (C) 2008 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Sweden solar irradiation and space heating loads are unevenly distributed over the year. Domestic hot water loads may be nearly constant. Test results on solar collector performance are often reported as yearly output of a certain collector at fixed temperatures, e g 25, 50 and 75 C. These data are not suitable for dimensioning of solar systems, because the actual performance of the collector depends heavily on solar fraction and load distribution over the year.At higher latitudes it is difficult to attain high solar fractions for buildings, due to overheating in summer and small marginal output for added collector area. Solar collectors with internal reflectors offer possibilities to evade overheating problems and deliver more energy at seasons when the load is higher. There are methods for estimating the yearly angular irradiation distribution, but there is a lack of methods for describing the load and the storage in such a way as to enable optical design of season and load adapted collectors.This report describes two methods for estimation of solar system performance with relevance for season and load adaption. Results regarding attainable solar fractions as a function of collector features, load profiles, load levels and storage characteristics are reported. The first method uses monthly collector output data at fixed temperatures from the simulation program MINSUN for estimating solar fractions for different load profiles and load levels. The load level is defined as estimated yearly collector output at constant collector temperature divided be yearly load. This table may examplify the results:CollectorLoadLoadSolar Improvementtypeprofile levelfractionover flat plateFlat plateDHW 75 %59 %Load adaptedDHW 75 %66 %12 %Flat plateSpace heating 50 %22 %Load adaptedSpace heating 50 %28 %29 %The second method utilises simulations with one-hour timesteps for collectors connected to a simplified storage and a variable load. Collector output, optical and thermal losses, heat overproduction, load level and storage temperature are presented as functions of solar incidence angles. These data are suitable for optical design of load adapted solar collectors. Results for a Stockholm location indicate that a solar combisystem with a solar fraction around 30 % should have collectors that reduce heat production at solar heights above 30 degrees and have optimum efficiency for solar heights between 8 and 30 degrees.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sealed gas filled flat plate solar collectors will have stresses in the material since volume and pressure varies in the gas when the temperature changes. Several geometries were analyzed and it could be seen that it is possible reducing the stresses and improve the safety factor of the weakest point in the construction by using larger area and/or reducing the distance between glass and absorber and/or change width and height relationship so the tubes are getting longer. Further it could be shown that the safety factor won't always get improved with reinforcements. It is so because when an already strong part of the collector gets reinforced it will expose weaker parts for higher stresses. The finite element method was used for finding out the stresses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a northern European climate a typical solar combisystem for a single family house normally saves between 10 and 30 % of the auxiliary energy needed for space heating and domestic water heating. It is considered uneconomical to dimension systems for higher energy savings. Overheating problems may also occur. One way of avoiding these problems is to use a collector that is designed so that it has a low optical efficiency in summer, when the solar elevation is high and the load is small, and a high optical efficiency in early spring and late fall when the solar elevation is low and the load is large.The study investigates the possibilities to design the system and, in particular, the collector optics, in order to match the system performance with the yearly variations of the heating load and the solar irradiation. It seems possible to design practically viable load adapted collectors, and to use them for whole roofs ( 40 m2) without causing more overheating stress on the system than with a standard 10 m2 system. The load adapted collectors collect roughly as much energy per unit area as flat plate collectors, but they may be produced at a lower cost due to lower material costs. There is an additional potential for a cost reduction since it is possible to design the load adapted collector for low stagnation temperatures making it possible to use less expensive materials. One and the same collector design is suitable for a wide range of system sizes and roof inclinations. The report contains descriptions of optimized collector designs, properties of realistic collectors, and results of calculations of system output, stagnation performance and cost performance. Appropriate computer tools for optical analysis, optimization of collectors in systems and a very fast simulation model have been developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report describes the work done creating a computer model of a kombi tank from Consolar. The model was created with Presim/Trnsys and Fittrn and DF were used to identify the parameters. Measurements were carried out and were used to identify the values of the parameters in the model. The identifications were first done for every circuit separately. After that, all parameters are normally identified together using all the measurements. Finally the model should be compared with other measurements, preferable realistic ones. The two last steps have not yet been carried out, because of problems finding a good model for the domestic hot water circuit.The model of the domestic hot water circuit give relatively good results for low flows at 5 l/min, but is not good for higher flows. In the report suggestions for improving the model are given. However, there was not enough time to test this within the project as much time was spent trying to solve problems with the model crashing. Suggestions for improving the model for the domestic circuit are given in chapter 4.4. The improved equations that are to be used in the improved model are given by equation 4.18, 4.19 and 4.22.Also for the boiler circuit and the solar circuit there are improvements that can be done. The model presented here has a few shortcomings, but with some extra work, an improved model can be created. In the attachment (Bilaga 1) is a description of the used model and all the identified parameters.A qualitative assessment of the store was also performed based on the measurements and the modelling carried out. The following summary of this can be given: Hot Water PreparationThe principle for controlling the flow on the primary side seems to work well in order to achieve good stratification. Temperatures in the bottom of the store after a short use of hot water, at a coldwater temperature of 12°C, was around 28-30°C. This was almost independent of the temperature in the store and the DHW-flow.The measured UA-values of the heat exchangers are not very reliable, but indicates that the heat transfer rates are much better than for the Conus 500, and in the same range as for other stores tested at SERC.The function of the mixing valve is not perfect (see diagram 4.3, where Tout1 is the outlet hot water temperature, and Tdhwo and Tdhw1 is the inlet temperature to the hot and cold side of the valve respectively). The outlet temperature varies a lot with different temperatures in the storage and is going down from 61°C to 47°C before the cold port is fully closed. This gives a problem to find a suitable temperature setting and gives also a risk that the auxiliary heating is increased instead of the set temperature of the valve, when the hot water temperature is to low.Collector circuitThe UA-value of the collector heat exchanger is much higher than the value for Conus 500, and in the same range as the heat exchangers in other stores tested at SERC.Boiler circuitThe valve in the boiler circuit is used to supply water from the boiler at two different heights, depending on the temperature of the water. At temperatures from the boiler above 58.2°C, all the water is injected to the upper inlet. At temperatures below 53.9°C all the water is injected to the lower inlet. At 56°C the water flow is equally divided between the two inlets. Detailed studies of the behaviour at the upper inlet shows that better accuracy of the model would have been achieved using three double ports in the model instead of two. The shape of the upper inlet makes turbulence, that could be modelled using two different inlets. Heat lossesThe heat losses per m3 are much smaller for the Solus 1050, than for the Conus 500 Storage. However, they are higher than those for some good stores tested at SERC. The pipes that are penetrating the insulation give air leakage and cold bridges, which could be a major part of the losses from the storage. The identified losses from the bottom of the storage are exceptionally high, but have less importance for the heat losses, due to the lower temperatures in the bottom. High losses from the bottom can be caused by air leakage through the insulation at the pipe connections of the storage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study reported here is part of a large project for evaluation of the Thermo-Chemical Accumulator (TCA), a technology under development by the Swedish company ClimateWell AB. The studies concentrate on the use of the technology for comfort cooling. This report concentrates on measurements in the laboratory, modelling and system simulation. The TCA is a three-phase absorption heat pump that stores energy in the form of crystallised salt, in this case Lithium Chloride (LiCl) with water being the other substance. The process requires vacuum conditions as with standard absorption chillers using LiBr/water. Measurements were carried out in the laboratories at the Solar Energy Research Center SERC, at Högskolan Dalarna as well as at ClimateWell AB. The measurements at SERC were performed on a prototype version 7:1 and showed that this prototype had several problems resulting in poor and unreliable performance. The main results were that: there was significant corrosion leading to non-condensable gases that in turn caused very poor performance; unwanted crystallisation caused blockages as well as inconsistent behaviour; poor wetting of the heat exchangers resulted in relatively high temperature drops there. A measured thermal COP for cooling of 0.46 was found, which is significantly lower than the theoretical value. These findings resulted in a thorough redesign for the new prototype, called ClimateWell 10 (CW10), which was tested briefly by the authors at ClimateWell. The data collected here was not large, but enough to show that the machine worked consistently with no noticeable vacuum problems. It was also sufficient for identifying the main parameters in a simulation model developed for the TRNSYS simulation environment, but not enough to verify the model properly. This model was shown to be able to simulate the dynamic as well as static performance of the CW10, and was then used in a series of system simulations. A single system model was developed as the basis of the system simulations, consisting of a CW10 machine, 30 m2 flat plate solar collectors with backup boiler and an office with a design cooling load in Stockholm of 50 W/m2, resulting in a 7.5 kW design load for the 150 m2 floor area. Two base cases were defined based on this: one for Stockholm using a dry cooler with design cooling rate of 30 kW; one for Madrid with a cooling tower with design cooling rate of 34 kW. A number of parametric studies were performed based on these two base cases. These showed that the temperature lift is a limiting factor for cooling for higher ambient temperatures and for charging with fixed temperature source such as district heating. The simulated evacuated tube collector performs only marginally better than a good flat plate collector if considering the gross area, the margin being greater for larger solar fractions. For 30 m2 collector a solar faction of 49% and 67% were achieved for the Stockholm and Madrid base cases respectively. The average annual efficiency of the collector in Stockholm (12%) was much lower than that in Madrid (19%). The thermal COP was simulated to be approximately 0.70, but has not been possible to verify with measured data. The annual electrical COP was shown to be very dependent on the cooling load as a large proportion of electrical use is for components that are permanently on. For the cooling loads studied, the annual electrical COP ranged from 2.2 for a 2000 kWh cooling load to 18.0 for a 21000 kWh cooling load. There is however a potential to reduce the electricity consumption in the machine, which would improve these figures significantly. It was shown that a cooling tower is necessary for the Madrid climate, whereas a dry cooler is sufficient for Stockholm although a cooling tower does improve performance. The simulation study was very shallow and has shown a number of areas that are important to study in more depth. One such area is advanced control strategy, which is necessary to mitigate the weakness of the technology (low temperature lift for cooling) and to optimally use its strength (storage).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main aim of this project is to develop an ESES lab on a full scale system. The solar combisystem used is available most of the time and is only used twice a year to carry out some technical courses. At the moment, there are no other laboratories about combisystems. The experiments were designed in a way to use the system to the most in order to help the students apply the theoretical knowledge in the solar thermal course as well as make them more familiar with solar systems components. The method adopted to reach this aim is to carry out several test sequences on the system, in order to help formulating at the end some educating experiments. A few tests were carried out at the beginning of the project just for the sake of understanding the system and figuring out if any additional measuring equipment is required. The level of these tests sequences was varying from a simple energy draw off or collector loop controller respond tests to more complicated tests, such as the use of thecollector’ heater to simulate the solar collector effect on the system. The tests results were compared and verified with the theoretical data wherever relevant. The results of the experiment about the use of thecollector’ heater instead of the collector were positively acceptable. Finally, the Lab guide was developed based on the results of these experiments and also the experience gotten while conducting them. The lab work covers the theories related to solar systems in general and combisystems in particular. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found. © 2012 The Authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta Tese apresenta uma análise do comportamento térmico de um sistema de aquecimento solar operando por termossifão. Neste tipo de sistema o fluido no coletor solar é circulado por convecção natural, que acontece devido à diferença de massa específica da água ao longo circuito. Nestes sistemas a vazão mássica varia ao longo do dia e do ano, dependendo, dentre outros fatores, da irradiância solar absorvida, do perfil de temperaturas da água no sistema, da geometria, do volume e do perfil de demanda de água quente. Para uma avaliação detalhada do comportamento térmico de aquecedores solares operando por termossifão foram realizados ensaios experimentais e cálculos teóricos. Os resultados dos experimentos concordaram com aqueles apresentados na literatura e sua análise fundamentou o desenvolvimento do aplicativo TermoSim, um programa de simulação computacional do comportamento térmico de sistemas de aquecimento de água com energia solar. O tratamento matemático adotado no TermoSim compreende a modelagem dos coletores solares de acordo com a teoria de Hottel-Bliss-Whillier. O reservatório térmico é modelado com estratificação térmica, convecção e condução entre as camadas. A vazão mássica é obtida a partir do balanço da quantidade de movimento no circuito. Os modelos matemáticos empregados na construção do aplicativo TermoSim foram validados através do confronto dos resultados simulados com medidas experimentais. Foi demonstrado que a utilização destes modelos é adequada e permite reproduzir com precisão o comportamento térmico dos coletores solares e do reservatório térmico. Além do programa TermoSim, foi também desenvolvido o programa TermoDim, que é uma ferramenta para o dimensionamento de sistemas de aquecimento solar, que requer apenas o conhecimento dos parâmetros geométricos do sistema, dados meteorológicos em média mensal e informação a respeito do volume de demanda. O TermoDim é apropriado para estimar o desempenho de aquecedores solares operando por termossifão com tanques verticais e horizontais. O método de dimensionamento do TermoDim é baseado na correlação para a eficiência média mensal obtida neste trabalho a partir de um grande número de simulações.