955 resultados para Temporary pools
Resumo:
Malondialdehyde (MDA) is a small, ubiquitous, and potentially toxic aldehyde that is produced in vivo by lipid oxidation and that is able to affect gene expression. Tocopherol deficiency in the vitamin E2 mutant vte2-1 of Arabidopsis thaliana leads to massive lipid oxidation and MDA accumulation shortly after germination. MDA accumulation correlates with a strong visual phenotype (growth reduction, cotyledon bleaching) and aberrant GST1 (glutathione S-transferase 1) expression. We suppressed MDA accumulation in the vte2-1 background by genetically removing tri-unsaturated fatty acids. The resulting quadruple mutant, fad3-2 fad7-2 fad8 vte2-1, did not display the visual phenotype or the aberrant GST1 expression observed in vte2-1. Moreover, cotyledon bleaching in vte2-1 was chemically phenocopied by treatment of wild-type plants with MDA. These data suggest that products of tri-unsaturated fatty acid oxidation underlie the vte2-1 seedling phenotype, including cellular toxicity and gene regulation properties. Generation of the quadruple mutant facilitated the development of an in situ fluorescence assay based on the formation of adducts of MDA with 2-thiobarbituric acid at 37 degrees C. Specificity was verified by measuring pentafluorophenylhydrazine derivatives of MDA and by liquid chromatography analysis of MDA-2-thiobarbituric acid adducts. Potentially applicable to other organisms, this method allowed the localization of MDA pools throughout the body of Arabidopsis and revealed an undiscovered pool of the compound unlikely to be derived from trienoic fatty acids in the vicinity of the root tip quiescent center.
Resumo:
Ramp metering has been successfully implemented in many states to improve traffic operations on freeways. Studies have documented the positive mobility and safety benefits of ramp metering. However, there have been no studies on the use of ramp metering for work zones. This report documents the results from the first deployment of temporary ramp meters in work zones in the United States. Temporary ramp meters were deployed at seven urban short-term work zones in Missouri. Safety measures such as driver compliance, merging behavior, and speed differentials were extracted from video-based field data. Mobility analysis was conducted using a calibrated simulation model and the total delays were obtained for under capacity, at capacity, and over capacity conditions. This evaluation suggests that temporary ramp meters should only be deployed at work zone locations where there is potential for congestion and turned on only during above-capacity conditions. The compliance analysis showed that non-compliance could be a major safety issue in the deployment of temporary ramp meters for under-capacity conditions. The use of a three-section instead of a traditional two-section signal head used for permanent ramp metering produced significantly higher compliance rates. Ramp metering decreased ramp platoons by increasing the percentage of single-vehicle merges to over 70% from under 50%. The accepted-merge-headway results were not statistically significant even though a slight shift towards longer headways was found with the use of ramp meters. Mobility analysis revealed that ramp metering produced delay savings for both mainline and ramp vehicles for work zones operating above capacity. On average a 24% decrease in total delay (mainline plus ramp) at low truck percentage and a 19% decrease in delay at high truck percentage conditions resulted from ramp metering.
Resumo:
The fate of European arctic-alpine species during Pleistocene climatic oscillations still remains debated. Did these cold-adapted species invade much of the continental steppe or did they remain restricted to warmer slopes of inner mountain massifs? To examine this question, we investigated the phylogeography of Gentiana nivalis, a typical European arctic-alpine plant species. Genome fingerprinting analyses revealed that four genetic pools are actually unevenly distributed across the continent. One cluster covers almost all mountain massifs as well as northern areas, and thus coincides with a scenario of past distribution covering a large part of the European glacial steppe. In contrast, the three other lineages are strongly restricted spatially to western, central, and eastern Alps, respectively, thus arguing towards a scenario of in situ glacial survival. The coexistence of lineages with such contrasting demographic histories in Europe challenges our classical view of refugia and corroborates several hypotheses of biogeographers from the twentieth century.
Resumo:
We investigate the variation in quantitative and molecular traits in the freshwater snail Galba truncatula, from permanent and temporary water habitats. Using a common garden experiment, we measured 20 quantitative traits and molecular variation using seven microsatellites in 17 populations belonging to these two habitats. We estimated trait means in each habitat. We also estimated the distributions of overall genetic quantitative variation (QST), and of molecular variation (FST), within and between habitats. Overall, we observed a lack of association between molecular and quantitative variance. Among habitats, we found QST>FST, an indication of selection for different optima. Individuals from temporary water habitat matured older, at a larger size and were less fecund than individuals from permanent water habitat. We discuss these findings in the light of several theories for life-history traits evolution.
Resumo:
The main objective of this research was to evaluate the impact of temporary speed humps and speed tables on vehicle speeds, vehicle speed profiles, and traffic volumes along local and/or collector streets in several rural Iowa cities. A 25 mile per hour (mph) temporary speed hump and a 30 mph temporary speed table, both made of recycled rubber, were purchased to test the impact of temporary devices. Two cities volunteered and the speed hump/table was installed on two test streets in the city of Atlantic (Roosevelt Drive and Redwood Drive) and one test street in the city of Le Claire (Canal Shore Drive). The speed hump was installed first and then converted to a speed table. Each device was installed for a period of at least two weeks at the same location. Speed, volume, and resident opinion data were then collected and evaluated.
Resumo:
This handbook provides a broad, easy to understand reference for temporary traffic control in work zones, addressing the safe and efficient accommodation of all road users: motorists, bicyclists, pedestrians, and those with special needs. When impacting a pedestrian facility, provide ten calendar days advance notification to the local jurisdiction and the National Federation of the Blind of Iowa (www.nfbi.org). The information presented is based on standards and guidance in the 2009 Edition of the Manual on Uniform Traffic Control Devices (MUTCD). References to the MUTCD sign designations in this handbook are shown in parentheses, e.g. (W20-1). Not all the recommendations in this handbook will apply to every circumstance faced by local agencies, and each unique situation may not be addressed. Modifications of the typical applications in this handbook will be required to adapt to specific field conditions. Therefore, use engineering judgment, seeking the advice of experienced professionals and supervisors in difficult and complex interpretations. This handbook can be used as a reference for temporary traffic control in work zones on all city or county roadways. However, always check contract documents and local agency requirements for any pertinent modifications.
Resumo:
Abstract: To understand the processes of evolution, biologists are interested in the ability of a population to respond to natural or artificial selection. The amount of genetic variation is often viewed as the main factor allowing a species to answer to selection. Many theories have thus focused on the maintenance of genetic variability. Ecologists and population geneticists have long-suspected that the structure of the environment is connected to the maintenance of diversity. Theorists have shown that diversity can be permanently and stably maintained in temporal and spatial varying environment in certain conditions. Moreover, varying environments have been also theoretically demonstrated to cause the evolution of divergent life history strategies in the different niches constituting the environment. Although there is a huge number of theoretical studies selection and on life history evolution in heterogeneous environments, there is a clear lack of empirical studies. The purpose of this thesis was to. empirically study the evolutionary consequences of a heterogeneous environment in a freshwater snail Galba truncatula. Indeed, G. truncatula lives in two habitat types according the water availability. First, it can be found in streams or ponds which never completely dry out: a permanent habitat. Second, G. truncatula can be found in pools that freeze during winter and dry during summer: a temporary habitat. Using a common garden approach, we empirically demonstrated local adaptation of G. truncatula to temporary and permanent habitats. We used at first a comparison of molecular (FST) vs. quantitative (QST) genetic differentiation between temporary and permanent habitats. To confirm the pattern QST> FST between habitats suggesting local adaptation, we then tested the desiccation resistance of individuals from temporary and permanent habitats. This study confirmed that drought resistance seemed to be the main factor selected between habitats, and life history traits linked to the desiccation resistance were thus found divergent between habitats. However, despite this evidence of selection acting on mean values of traits between habitats, drift was suggested to be the main factor responsible of variation in variances-covariances between populations. At last, we found life history traits variation of individuals in a heterogeneous environment varying in parasite prevalence. This thesis empirically demonstrated the importance of heterogeneous environments in local adaptation and life history evolution and suggested that more experimental studies are needed to investigate this topic. Résumé: Les biologistes se sont depuis toujours intéressés en l'aptitude d'une population à répondre à la sélection naturelle. Cette réponse dépend de la quantité de variabilité génétique présente dans cette population. Plus particulièrement, les théoriciens se sont penchés sur la question du maintient de la variabilité génétique au sein d'environnements hétérogènes. Ils ont alors démontré que, sous certaines conditions, la diversité génétique peut se maintenir de manière stable et permanente dans des environnements variant au niveau spatial et temporel. De plus, ces environments variables ont été démontrés comme responsable de divergence de traits d'histoire de vie au sein des différentes niches constituant l'environnement. Cependant, malgré ce nombre important d'études théoriques portant sur la sélection et l'évolution des traits d'histoire de vie en environnement hétérogène, les études empiriques sont plus rares. Le but de cette thèse était donc d'étudier les conséquences évolutives d'un environnement hétérogène chez un esgarcot d'eau douce Galba truncatula. En effet, G. truncatula est trouvé dans deux types d'habitats qui diffèrent par leur niveau d'eau. Le premier, l'habitat temporaire, est constitué de flaques d'eau qui peuvent s'assécher pendant l'été et geler pendant l'hiver. Le second, l'habitat permanent, correspond à des marres ou à des ruisseaux qui ont un niveau d'eau constant durant toute l'année. Utilisant une approche expérimentale de type "jardin commun", nous avons démontré l'adaptation locale des individus à leur type d'habitat, permanent ou temporaire. Nous avons utilisé l'approche Fsr/QsT qui compare la différentiation génétique moléculaire avec la différentiation génétique quantitative entre les 2 habitats. Le phénomène d'adapation locale démontré par QsT > FsT, a été testé experimentalement en mesurant la résistance à la dessiccation d'individus d'habitat temporaire et permanent. Cette étude confirma que la résistance à la sécheresse a été sélectionné entre habitats et que les traits responsables de cette resistance sont différents entre habitats. Cependant si la sélection agit sur la valeur moyenne des traits entre habitats, la dérive génétique semble être le responsable majeur de la différence de variances-covariances entre populations. Pour finir, une variation de traits d'histoire de vie a été trouvée au sein d'un environnement hétérogène constitué de populations variants au niveau de leur taux de parasitisme. Pour conclure, cette thèse a donc démontré l'importance d'un environnement hétérogène sur l'adaptation locale et l'évolution des traits d'histoire de vie et suggère que plus d'études empiriques sur le sujet sont nécessaires.
Resumo:
p-Nitrobenzyloxycarbonyl was used as temporary protecting group for the -amino function in solid-phase peptide synthesis. The corresponding derivatives are solids, easy to be synthesized, and perform well in the solid-phase mode. pNZ is removed in practical neutral conditions in the presence of catalytic amounts of acid. They are orthogonal with the most common protecting groups used in peptide chemistry. They are specially useful in combination with Fmoc chemistry to overcome those side reactions associated with the used of the piperidine such DKP and aspartiimide formation. The flexibility of pNZ can be very useful for the preparation of libraries of small organic molecules.
Resumo:
Biofilm communities are exposed to long periods of desiccation in temporary streams. We investigated how water flow intermittency affected the bacterial community structure colonizing three different streambed compartments in a Mediterranean stream. Massive parallel sequencing revealed different bacterial communities in biofilms from sand sediments and cobbles. Bacterial communities were similar (62% of shared operational taxonomic units) in the epipsammic and hyporheic biofilms, and more diverse than those in the epilithic biofilms. The non-flow phase caused a decrease of bacterial diversity in the biofilms, when communities included only bacterial taxa assumed to be adapted to water stress. The most sensitive bacterial communities to flow intermittency were in the epilithic, where the exposure to physical stress was the highest. In sand sediments a wide group of bacterial taxa was tolerant to desiccation. During non-flow the proliferation of opportunistic taxa in the superficial compartments evidenced the biological link with the terrestrial environment. Bacterial communities better tolerate rewetting than desiccation, since a major number of taxa tolerant to rewetting occurred in all biofilms. Overall, bacterial communities in sandy compartments showed higher resistance to flow intermittency than those in epilithic biofilms
Resumo:
This study aimed at quantifying total organic carbon stocks and its pools in Acrisol under agroforestry systems with six (AFS6) and thirteen years old (AFS13), slash-and-burn agriculture (SBA) and savanna native forest (SNF) in northeastern Brazil. Soil samples were collected at 0-0.05 m, 0.05-0.10 m, 0.10-0.20 m and 0.20-0.40 m depths in the dry and rainy seasons to evaluate total organic carbon (TOC) stocks and labile carbon (LC), fulvic acid fraction (C-FAF), humic acid fraction (C-HAF), humin (C-HF) and microbial biomass carbon (Cmic) contents. Additionally, carbon management index (CMI) was determined. Higher TOC stocks (97.7 and 81.8 Mg ha-1 for the 0-0.40 m depth in the dry and rainy seasons, respectively) and LC, humic substances and Cmic contents were observed in the AFS13 in all the depths. CMI also was higher in the AFS13 (0-0. 05 m: 158 and 86; 0.05-0.10 m: 171 and 67, respectively for the dry and rainy seasons) especially when compared to the SBA (0-0.05 m: 5.6 and 5.4; 0.05-0.10 m: 5.3 and 5.8, respectively for dry and rainy seasons). The agroforestry systems increased soil quality through the conservation of organic matter and can be considered an excellent strategy to assurance sustainability in tropical soil of Northeastern Brazil
Resumo:
The condensation rate has to be high in the safety pressure suppression pool systems of Boiling Water Reactors (BWR) in order to fulfill their safety function. The phenomena due to such a high direct contact condensation (DCC) rate turn out to be very challenging to be analysed either with experiments or numerical simulations. In this thesis, the suppression pool experiments carried out in the POOLEX facility of Lappeenranta University of Technology were simulated. Two different condensation modes were modelled by using the 2-phase CFD codes NEPTUNE CFD and TransAT. The DCC models applied were the typical ones to be used for separated flows in channels, and their applicability to the rapidly condensing flow in the condensation pool context had not been tested earlier. A low Reynolds number case was the first to be simulated. The POOLEX experiment STB-31 was operated near the conditions between the ’quasi-steady oscillatory interface condensation’ mode and the ’condensation within the blowdown pipe’ mode. The condensation models of Lakehal et al. and Coste & Lavi´eville predicted the condensation rate quite accurately, while the other tested ones overestimated it. It was possible to get the direct phase change solution to settle near to the measured values, but a very high resolution of calculation grid was needed. Secondly, a high Reynolds number case corresponding to the ’chugging’ mode was simulated. The POOLEX experiment STB-28 was chosen, because various standard and highspeed video samples of bubbles were recorded during it. In order to extract numerical information from the video material, a pattern recognition procedure was programmed. The bubble size distributions and the frequencies of chugging were calculated with this procedure. With the statistical data of the bubble sizes and temporal data of the bubble/jet appearance, it was possible to compare the condensation rates between the experiment and the CFD simulations. In the chugging simulations, a spherically curvilinear calculation grid at the blowdown pipe exit improved the convergence and decreased the required cell count. The compressible flow solver with complete steam-tables was beneficial for the numerical success of the simulations. The Hughes-Duffey model and, to some extent, the Coste & Lavi´eville model produced realistic chugging behavior. The initial level of the steam/water interface was an important factor to determine the initiation of the chugging. If the interface was initialized with a water level high enough inside the blowdown pipe, the vigorous penetration of a water plug into the pool created a turbulent wake which invoked the chugging that was self-sustaining. A 3D simulation with a suitable DCC model produced qualitatively very realistic shapes of the chugging bubbles and jets. The comparative FFT analysis of the bubble size data and the pool bottom pressure data gave useful information to distinguish the eigenmodes of chugging, bubbling, and pool structure oscillations.
Resumo:
OBJECTIVE: to present our experience with scheduled reoperations in 15 patients with intra-abdominal sepsis. METHODS: we have applied a more effective technique consisting of temporary abdominal closure with a nylon mesh sheet containing a zipper. We performed reoperations in the operating room under general anesthesia at an average interval of 84 hours. The revision consisted of debridement of necrotic material and vigorous lavage of the involved peritoneal area. The mean age of patients was 38.7 years (range, 15 to 72 years); 11 patients were male, and four were female. RESULTS: forty percent of infections were due to necrotizing pancreatitis. Sixty percent were due to perforation of the intestinal viscus secondary to inflammation, vascular occlusion or trauma. We performed a total of 48 reoperations, an average of 3.2 surgeries per patient. The mesh-zipper device was left in place for an average of 13 days. An intestinal ostomy was present adjacent to the zipper in four patients and did not present a problem for patient management. Mortality was 26.6%. No fistulas resulted from this technique. When intra-abdominal disease was under control, the mesh-zipper device was removed, and the fascia was closed in all patients. In three patients, the wound was closed primarily, and in 12 it was allowed to close by secondary intent. Two patients developed hernia; one was incisional and one was in the drain incision. CONCLUSION: the planned reoperation for manual lavage and debridement of the abdomen through a nylon mesh-zipper combination was rapid, simple, and well-tolerated. It permitted effective management of severe septic peritonitis, easy wound care and primary closure of the abdominal wall.
Resumo:
During endodontic therapy (pulpectomy, root canal debridement and root canal filling) microbiological management is a major concern. Bacteria present in dentine tubules, apical foramina and apical delta are causally related to failure of the procedure. Studies have shown that during single session endodontic treatment bacteria remain within dental structures. The aim of the present study was to evaluate endodontic treatment performed as two sessions, using temporary endodontic dressing materials for different periods in four groups of experimental dogs. A total of 80 roots of second and third upper premolar teeth and second, third and fourth lower premolar teeth were divided into four groups. The pulp chamber was opened with burrs and the pulp exposed for 60 days to induce pulpal inflammation and necrosis. Groups II, III and IV were treated with calcium hydroxide plus camphorated paramono-chlorophenol (PMCC) for 7, 15 and 30 days, respectively. In all groups, the root canals were filled with zinc oxide-eugenol and gutta-percha cones. Clinical and radiographical measurements were performed every 2 weeks. After 60 days a small block section containing the teeth, surrounding periapical tissues and the periodontium was removed for histological and microbiological study. Histological analysis revealed intense inflammatory response in all groups. Microbiological analysis showed microbial reduction inversely proportional to the period of time that the intracanal temporary medicament was left in place.