866 resultados para Temporary
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
As sementes da palmeira juçara (Euterpe edulis Mart.) são recalcitrantes, apresentando baixa longevidade e sensibilidade à desidratação e ao armazenamento em temperaturas baixas. Neste trabalho foram estudadas condições de temperatura mais adequadas ao armazenamento temporário destas sementes com e sem a polpa. Frutos maduros foram colhidos em 24 plantas provenientes da coleção de palmeiras do Instituto Agronômico (IAC) localizada em Ubatuba, estado de São Paulo, e encaminhadas, em embalagem impermeável, à Faculdade de Ciências Agronômicas da UNESP, Campus de Botucatu (SP). Metade dos frutos foi despolpada e outra metade foi mantida com polpa, sendo ambas armazenadas em sacos fechados de polietileno (20 µm de espessura) mantidos em temperaturas de 5; 10; 15 e 20-30ºC. Amostras para os testes de qualidade foram retiradas aos 0; 3; 6; 9 e 12 dias após a colheita dos frutos. As sementes armazenadas com polpa foram despolpadas imediatamente antes da instalação dos testes. Foram avaliados o grau de umidade das sementes, porcentagem de germinação, comprimento e matéria seca das plântulas. Os resultados mostraram que há efeito positivo de pós-amadurecimento em sementes de Euterpe edulis. Um período de armazenamento de 9 a 12 dias, após a colheita e antes da semeadura, favoreceu a germinação e o vigor das sementes de juçara. Os efeitos foram maiores para sementes armazenadas sem polpa do que com polpa. Temperaturas na faixa de 5 a 20-30ºC são igualmente adequadas para o armazenamento temporário de sementes sem polpa. No entanto, para sementes com polpa, a temperatura de armazenamento não deve exceder a 20ºC, visto que um decréscimo na germinação e no vigor e um acréscimo no número de botões germinativos apodrecidos e sementes mortas foram observados na temperatura de 20-30ºC.
Effects of temporary immobilization in immediate dental replantation - An experimental study in rats
Resumo:
In a previous work, Vieira Neto & Winter (2001) numerically explored the capture times of particles as temporary satellites of Uranus. The study was made in the framework of the spatial, circular, restricted three-body problem. Regions of the initial condition space whose trajectories are apparently stable were determined. The criterion adopted was that the trajectories do not escape from the planet during an integration of 10(5) years. These regions occur for a wide range of orbital initial inclinations (i). In the present work it is studied the reason for the existence of such stable regions. The stability of the planar retrograde trajectories is due to a family of simple periodic orbits and the associated quasi-periodic orbits that oscillate around them. These planar stable orbits had already been studied (Henon 1970; Huang & Innanen 1983). Their results are reviewed using Poincare surface of sections. The stable non-planar retrograde trajectories, 110 degrees less than or equal to i < 180
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The study evaluated, in early post-partum anoestrous Nelore cows, if the increase in plasma oestradiol (E2) concentrations in the pre-ovulatory period and/or progesterone priming (P4 priming) preceding ovulation, induced by hormonal treatment, reduces the endogenous release of prostaglandin PGF(2)alpha and prevents premature lysis of the corpus luteum (CL). Nelore cows were subjected to temporary calf removal for 48 h and divided into two groups: GPE/eCG group (n = 10) and GPG/eCG group (n = 10). Animals of the GPE/eCG group were treated with a GnRH agonist. Seven days later, they received 400 ID of eCG, immediately after PGF(2)alpha treatment, and on day 0, 1.0 mg of oestradiol benzoate (EB). Cows of the GPG/eCG group were similarly treated as those of the GPE/eCG group, except that EB was replaced with a second dose of GnRH. All animals were challenged with oxytocin (OT) 9, 12, 15 and 18 days after EB or GnRH administration and blood samples were collected before and 30 min after OT. Irrespective of the treatments, a decline in P4 concentration on day 18 was observed for cows without P4 priming. However, animals exposed to P4 priming, treated with EB maintained high P4 concentrations (8.8 +/- 1.2 ng/ml), whereas there was a decline in P4 on day 18 (2.1 +/- 1.0 ng/ml) for cows that received GnRH to induce ovulation (p < 0.01). Production of 13,14-dihydro-15-keto prostaglandin F-2 alpha (PGFM) in response to OT increased between days 9 and 18 (p < 0.01), and this increase tended to be more evident in animals not exposed to P4 priming (p < 0.06). In conclusion, the increase in E2 during the pre-ovulatory period was not effective in inhibiting PGFM release, which was lower in P4-primed than in non-primed animals. Treatment with EB promoted the maintenance of elevated P4 concentrations 18 days after ovulation in P4-primed animals, indicating a possible beneficial effect of hormone protocols containing EB in animals with P4 priming.
Resumo:
In temporary ponds tadpoles of the frogs Leptodactylus fuscus and Hyla fuscovaria may be exposed to temperatures up to 40-44°C. Experimental exposure to high temperature revealed survivals after 30 min at 42°C for H. fuscovaria and at 44°C for L. fuscus. -from Authors
Resumo:
The knowledge of nutrient mobility is an important tool to define the best fertilizer management and diagnosis techniques. Patterns of boron (B) mobility in plants have been reviewed, but there is very little information on B distribution and mobility in cotton. An experiment was conducted to study plant growth and B distribution in cotton when the nutrient was applied in the nutrient solution or to the leaves, and when a temporary deficiency was imposed. Cotton (Gossypium hirsutum, Latifolia, cv. IAC 22) was grown in nutrient solutions where B was omitted or not for 15 days. Boron was applied to young or mature cotton leaves in some of the minus B treatments. Root growth decreased when the plants were transferred to B solutions, but there was a full recovery when B was replaced in the nutrient medium. Boron deficiency, even when temporary, reduced cotton shoot dry matter yields, plant height and flower and fruit set, and these could not be prevented by foliar application of B. Because of decreased dry matter production, leaves of deficient cotton plants actually showed higher B concentrations than non deficient leaves. This would be misleading when a mature leaf is sampled for diagnosis. If there is any B mobility in cotton phloem, it is very low.