994 resultados para TRIASSIC MASS EXTINCTION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A global review of the stratigraphical and geographical distribution of Tyloplecta reveals that the genus ranges in age from Kungurian to Changhsingian (Middle to Late Permian). Tyloplecta first evolved in South China in the Kungurian (late Early Permian). The genus went through its first diversification in the Guadalupian, suffered a major extinction at the end of the Guadalupian, and re-diversified in the Wuchiapingian. T. yangtzeensis persisted into the Changhsingian as the only survivor of the genus involved in the end-Permian mass extinction. Palaeogeographically, South China is not only the centre of origin for the genus but also an area of diversification and evolution. In addition to South China, Tyloplecta has also been recorded from the Far East Russia, Japan, central Thailand, Laos, Cambodia, Qiangtang Terrane of Tibet, Salt Range, Iran, Armenia, Hungary, Yugoslavia, and Slovenia. This geographic spread suggests that Tyloplecta was primarily restricted to the Palaeotethys and is indicative of warm-water palaeoequatorial conditions. Its presence in some of the northeast Asian terranes (e.g., parts of Japan and Far East Russia) and in the Salt Range (Pakistan) and central and north Iran (part of the Cimmerian microcontinents) demonstrate that the genus invaded the middle palaeolatitudinal regions in both hemispheres during the late Middle Permian in response to increased shallow marine biotic communications between Cathaysia in the eastern Palaeotethys and southern Angaraland, and between Cathaysia and Peri-Gondwanaland. The invasion of Tyloplecta (and some other taxa) into the southern shore waters of Angaraland may be explained by assuming ocean surface current connections and close palaeogeographical proximities between the South China, Sino-Korea and Bureya blocks. In comparison, the invasion of Tyloplecta into the Peri-Gondwanaland region is more likely a result of reduced palaeogeographical distance between South China and Peri-Gondwanaland and the appearance of the Cimmerian microcontinents as migratory stepping stones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Late Permian Shaiwa Group of the Ziyun area of Guizhou, South China is a deep-water facies succession characterized by deep-water assemblages of pelagic radiolarians, foraminifers, bivalves, ammonoids and brachiopods. Here we report 20 brachiopod species in 18 genera from the uppermost Shaiwa Group. This brachiopod fauna is latest Changhsingian in age and dominated by productides. The palaeoecologic and taphonomic analysis reveals that the brachiopod fauna is preserved in situ. The attachment modes and substratum preference demonstrate that the Shaiwa brachiopod fauna comprises admixed elements of deep-water and shallow-water assemblages. The presence of the shallow-water brachiopods in the Shaiwa faunas indicates the involuntary settlement of shallow-water brachiopods. The stressed ecologic pressure, triggered by warming surface waters, restricted ecospace and short food sources, may have forced some shallow-water elements to move to hospitable deep-water settings and others to modify their habiting behaviours and exploit new ecospace in deep-water environments. We infer that the end-Permian global warming and subsequent transgression event may have accounted for the stressed environmental pressure in the shallow-water communities prior to the end-Permian mass extinction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Isogramma manchoukuoensis from the Upper Carboniferous of northeast China is redefined based on re-examination of the type specimens. Isogramma specimens from the Middle Permian of northeastern Japan are reassigned to I. aff. paotechowensis. A new family, Schizopleuroniidae, is proposed to include Schizopleuronia, but excludes Megapleuronia, which belongs to the Megapleuroniidae Liao, 1983. The family Isogrammidae is considered to be a transitional group in the eichwaldid-isogrammid-schizopleuronid evolutionary lineage within the Dictyonellida. A review of the global distribution of Isogramma species reveals that the genus has a total of 56 species ranging from the Mississippian (Early Carboniferous) to the Lopingian (Late Permian). Isogramma diversified rapidly after its origination in the middle Viséan and its species diversity remained high throughout the Mississippian. The genus possibly suffered a severe mid-Carboniferous boundary mass extinction, with no Early Carboniferous species surviving this event. Bashkirian Isogramma species show low diversity, followed by a global recovery in the Moscovian. During the latest Carboniferous Isogramma became highly diversified again. At the Carboniferous–Permian (C/P) transition Isogramma underwent another dramatic diversity drop, followed by several stepwise declines in diversity during the Early–Middle Permian. The Wuchiapingian I. sinosa is the last Isogramma species.

Ukraine was the possible centre of origin for Isogramma. From Ukraine Isogramma spread over the Moscow Basin of Russia, Central Europe (Germany, Austria), South Europe (Spain) and West Europe (England, Ireland and Scotland), and migrated to the North American midcontinent and South China during the late Viséan (Early Carboniferous). In Europe, Isogramma migrated to Spain and eastern Europe (Serbia) in the Moscovian, from there it then dispersed into Central Asia (Uzbekistan and Kazakhstan) in the Kasimovian-Gzhelian. In the Palaeo-Tethys Isogramma migrated from South China to northeast and northwest China in the Moscovian, spread over the North China Block during the C/P transition, moved to Russian Siberia, Japan and the Qiangtang terrane of the Palaeo-Tethys during the Early–Late Permian. In North America Isogramma spread over the midcontinent during the Late Carboniferous and Early–Middle Permian and migrated to South America (Bolivia) in latest Carboniferous. Biogeographically, Isogramma was confined principally to the palaeo-tropical and warm to temperate zones throughout the Late Palaeozoic, with the possible exception of the Artinskian, as a questionable species of the genus also occurs in the Transbaikal region of southeast Russia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A brachiopod fauna comprising nine species in eight genera from three closely spaced stratigraphic horizons of the same stratigraphic section is described for the first time from the Laibin Limestone in the uppermost part of the Maokou Formation in the Guadalupian/Lopingian (G/L) GSSP section at Penglaitan, Guangxi Autonomous Region, South China. The brachiopod assemblages are bracketed between two conodont zones: Jinogondolella xuanhanensis Zone below and Jinogondolella granti Zone above and, therefore, they can be safely assigned to the latest Capitanian in age. However, all but one of the nine brachiopod species from the Laibin Limestone carry strong early Lopingian (Wuchiapingian) aspect. Thus, the discovery of this brachiopod fauna not only suggests that some Lopingian brachiopod species had already appeared in the late Guadalupian (Capitanian); more importantly, it has also highlighted the fact that both the previously noted pre-Lopingian life crisis (or end-Guadalupian or Middle Permian mass extinction) and Lopingian recovery/radiation actually occurred in late Capitanian times, sometime before the G/L chronostratigraphic boundary. So far, the Penglaitan GSSP section provides the highest-resolution disappearance patterns of different fossil groups around the G/L boundary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The uppermost 5-15 m of the Douling Formation in the southern Hunan area. South China, yields a diverse fauna comprised of ammonoids, bivalves, and brachiopods. The brachiopods reported in this paper consist of 51 species in 34 genera and are dominated by the Lopingian (Late Permian) species associated with a few species persisting from the underlying Maokouan (Late Guadalupian). This fauna is of earliest Wuchiapingian in age as precisely constrained by the associated conodont Clarkina postbitteri postbitteri and the Guadalupian-type ammonoid fauna of the Roadoceras-Doulingoceras Zone in the brachiopod horizon. The discovery of the Lopingian species-dominated brachiopod fauna in the earliest Wuchiapingian in southern Hunan suggests a much less pronounced effect of the pre-Lopingian crisis (end-Guadalupian mass extinction) than the end-Changhsingian mass extinction in terms of brachiopods, a contemporaneous onset of the Lopingian recovery/radiation during the pre-Lopingian crisis period, and taxonomic selectivity of the pre-Lopingian crisis in terms of different fossil groups. New taxa are Echinauris doulingensis n. sp., Pararigbyella quadrilobata n. gen. and n. sp. and P. doulingensis n. gen. and n. sp.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

 B.V. Body size is a fundamental and defining character of an organism, and its variation in space and time is generally considered to be a function of its biology and interactions with its living environment. A great deal of body size related ecological and evolutionary research has been undertaken, mostly in relation to extant animals. Among the many body size-related hypotheses proposed and tested, the size-bathymetry relationship is probably the least studied. In this study, we compiled a global body size dataset of Changhsingian (Late Permian, ca. 254. Ma-252. Ma) brachiopod species from low-latitude areas (30°S-30°N) and analyzed their species diversity and body size distribution patterns in relation to the nearshore-offshore-basin bathymetric gradient. The dataset contained 1768 brachiopod specimens in 435 species referred to 159 genera and 9 orders, from 135 occurrences (localities) of 18 different palaeogeographic regions. Treating the whole of the Changhsingian Stage as a single time slice, we divided the nearshore-offshore-basin bathymetric gradient into three broad depth-related environments: nearshore, offshore and basinal environments, and compared how the species diversity and body size varied along this large-scale bathymetric gradient.Here, we report an array of complex patterns. First, we found a clear overall inverse correlation between species diversity and water depth along the nearshore-offshore-basin gradient, with most species concentrating in the nearshore environment. Second, when the median sizes of all low-latitude brachiopod species from the three environments were compared, we found that there was no significant size difference between the nearshore and offshore environments, suggesting that neither the wave base nor the hydrostatic pressure exerts a critical influence on the body size of brachiopods. On the other hand, the median sizes of brachiopods from the nearshore environment and, to a lesser extent, the offshore environment were found to be significantly larger than that of basinal brachiopods. This trend of significant size reduction in basinal brachiopods mirrors the relative low species diversity in the basinal environment, and neither can be easily explained by the tendency of decreasing food availability towards deeper sea environments. Rather, both trends are consistent with the hypothesis of an expanding Oxygen Minimum Zone (OMZ) in the bathyal (slope to deepsea) environments, where hypoxic to anoxic conditions are considered to have severely restricted the diversification of benthos and favored the relative proliferation of small-sized brachiopods. Finally, a significant difference was also found between eurybathic and stenobathic species in their body size response to the nearshore-offshore-basin gradient, in that eurybathic species (species found in all three environments) did not tend to change their body size significantly according to depth, whereas stenobathic forms (species restricted to a single environment) exhibit a decline in body size towards the basinal environment. This pattern is interpreted to suggest that bathymetrically more tolerant species are less sensitive to depth control with respect to their body size change dynamics, in contrast to stenobathic species which tend to grow larger in shallower water depths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Defaunation, originally conceived as the loss of large vertebrates due to hunting or fragmentation, has been widely used in conservation studies yet the term has been arbitrarily used and poorly defined. Here we refine this term by creating a quantitative index that can be used to compare ecological communities over large zoogeographical regions. We propose a defaunation index (. D) as a weighted measure of dissimilarity between the current assemblage of a given location and a reference assemblage that represents a historical and/or unperturbed state. We analyzed the index by means of three case studies that included two empirical assessments of mammal communities in Neotropical rainforests and one hypothetical example, encompassing a variety of criteria to quantify differences in species density and importance. These cases illustrate the broad range of index applicability and show that incorporating functional differences among species, such as those based on body size, conservation status or evolutionary originality can add important information beyond simply species richness. © 2013 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Documenting the Neotropical amphibian diversity has become a major challenge facing the threat of global climate change and the pace of environmental alteration. Recent molecular phylogenetic studies have revealed that the actual number of species in South American tropical forests is largely underestimated, but also that many lineages are millions of years old. The genera Phyzelaphryne (1 sp.) and Adelophryne (6 spp.), which compose the subfamily Phyzelaphryninae, include poorly documented, secretive, and minute frogs with an unusual distribution pattern that encompasses the biotic disjunction between Amazonia and the Atlantic forest. We generated >5.8 kb sequence data from six markers for all seven nominal species of the subfamily as well as for newly discovered populations in order to (1) test the monophyly of Phyzelaphryninae, Adelophryne and Phyzelaphryne, (2) estimate species diversity within the subfamily, and (3) investigate their historical biogeography and diversification. Phylogenetic reconstruction confirmed the monophyly of each group and revealed deep subdivisions within Adelophryne and Phyzelaphryne, with three major clades in Adelophryne located in northern Amazonia, northern Atlantic forest and southern Atlantic forest. Our results suggest that the actual number of species in Phyzelaphryninae is, at least, twice the currently recognized species diversity, with almost every geographically isolated population representing an anciently divergent candidate species. Such results highlight the challenges for conservation, especially in the northern Atlantic forest where it is still degraded at a fast pace. Molecular dating revealed that Phyzelaphryninae originated in Amazonia and dispersed during early Miocene to the Atlantic forest. The two Atlantic forest clades of Adelophryne started to diversify some 7 Ma minimum, while the northern Amazonian Adelophryne diversified much earlier, some 13 Ma minimum. This striking biogeographic pattern coincides with major events that have shaped the face of the South American continent, as we know it today. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work is to study the features of a simple replicator chemical model of the relation between kinetic stability and entropy production under the action of external perturbations. We quantitatively explore the different paths leading to evolution in a toy model where two independent replicators compete for the same substrate. To do that, the same scenario described originally by Pross (J Phys Org Chem 17:312–316, 2004) is revised and new criteria to define the kinetic stability are proposed. Our results suggest that fast replicator populations are continually favored by the effects of strong stochastic environmental fluctuations capable to determine the global population, the former assumed to be the only acting evolution force. We demonstrate that the process is continually driven by strong perturbations only, and that population crashes may be useful proxies for these catastrophic environmental fluctuations. As expected, such behavior is particularly enhanced under very large scale perturbations, suggesting a likely dynamical footprint in the recovery patterns of new species after mass extinction events in the Earth’s geological past. Furthermore, the hypothesis that natural selection always favors the faster processes may give theoretical support to different studies that claim the applicability of maximum principles like the Maximum Metabolic Flux (MMF) or Maximum Entropy Productions Principle (MEPP), seen as the main goal of biological evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the years 1984–1987 Lake Victoria in East Africa experienced what is probably the largest mass extinction of contemporary vertebrates. Within a decade about 200 endemic species of haplochromine cichlids disappeared. The extinctions that occurred in the 1980s have been documented predominantly on species of offshore and sub-littoral waters in the Mwanza Gulf of southern Lake Victoria. Although the littoral fauna of southern Lake Victoria had not been examined in detail, their diversity seemed less affected by the changes in the ecosystem. We give results of the first comprehensive inventory of the littoral cichlid fauna in southern Lake Victoria and discuss its conservation status. We also report on new developments in the sub-littoral fauna after 1990. More than 50 littoral and 15 sub-littoral stations were sampled between the years 1991 to 1995. Of the littoral stations, 34 were sampled for the first time. One hundred sixty three species of haplochromines were collected. Of these, 102 species were previously unknown. About two thirds of them live in rocky areas that were sampled for the first time. Littoral rocky habitats harbored the highest diversity. Since 1990, however, 13 more species disappeared from established sampling stations in littoral habitats. Fishing practices, spreading of exotic fishes, water hyacinth, and eutrophication are considered important threats to the littoral fauna. Also in the upper sub-littoral the number of species declined further. On deeper sub-littoral mud bottoms individual and species numbers increased again, although they are nowhere close to those found before the Nile perch (Lates niloticus) upsurge. This fauna differs from the well studied pre-Nile perch fauna. At well-established sampling stations, the sub-littoral zone is dominated by previously unknown species, and some known species have performed dramatic habitat shifts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The precise cause and timing of the Cretaceous-Paleocene (K-P) mass extinction 65 Ma ago remains a matter of debate. Many advocate that the extinction was caused by a meteorite impact at Chicxulub, Mexico, and a number of potential kill-mechanisms have been proposed for this. Although we now have good constraints on the size of this impact and chemistry of the target rocks, estimates of its environmental consequences are hindered by a lack of knowledge about the obliquity of this impact. An oblique impact is likely to have been far more catastrophic than a sub-vertical one, because greater volumes of volatiles would have been released into the atmosphere. The principal purpose of this study was to characterize shocked quartz within distal K-P ejecta, to investigate whether the quartz distribution carried a signature of the direction and angle of impact. Our analyses show that the total number, maximum and average size of shocked quartz grains all decrease gradually with paleodistance from Chicxulub. We do not find particularly high abundances in Pacific sites relative to Atlantic and European sites, as has been previously reported, and the size-distribution around Chicxulub is relatively symmetric. Ejecta samples at any one site display features that are indicative of a wide range of shock pressures, but the mean degree of shock increases with paleodistance. These shock- and size-distributions are both consistent with the K-P layer having been formed by a single impact at Chicxulub. One site in the South Atlantic contains quartz indicating an anomalously high average shock degree, that may be indicative of an oblique impact with an uprange direction to the southeast +/- 45°. The apparent continuous coverage of proximal ejecta in this quadrant of the crater, however, suggests a relatively high impact angle of >45°. We conclude that some of the more extreme predictions of the environmental consequences of a low-angle impact at Chicxulub are probably not applicable.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An Eocene-Oligocene calcareous nannofossil biostratigraphic framework for Ocean Drilling Program (ODP) Site 748 in the southern Indian Ocean is established, which provides a foundation for this and future quantitative biogeographic studies. This biostratigraphic analysis, together with quantitative nannofossil data, enables a reinterpretation of the preliminary magnetostratigraphy and a new placement for magnetic Subchron CBN in the lowermost Oligocene. Calcareous nannofossil species diversity is low at Site 748 relative to lower latitude sites, with about 13 taxa in the middle Eocene, gradually decreasing to about 6 in the late Oligocene. There is, however, no apparent mass extinction at any stratigraphic level. Similarly, no mass extinctions were recorded at or near the Eocene/Oligocene boundary at Site 711 in the equatorial Indian Ocean. Species diversity at the equatorial site is significantly higher than at Site 748, with a maximum of 39 species in the middle Eocene and a minimum of 14 species in the late Oligocene. The abundance patterns of nannofossil taxa are also quite different at the two sites, with chiasmoliths, Isthmolithus recurvus, and Reticulofenestra daviesii abundant and restricted to the high-latitude site and Coccolithus formosus, discoasters, and sphenoliths abundant at the equatorial site but impoverished at the high-latitude site. This indicates a significant latitudinal biogeographic gradient between the equatorial site and the high-latitude site in the Indian Ocean for the middle Eocene-Oligocene interval. The abundance change of warm-water taxa is similar to that of species diversity at Site 711. There is a general trend of decreasing abundance of warm-water taxa from the middle Eocene through the early Oligocene at Site 711, suggesting a gradual cooling of the surface waters in the equatorial Indian Ocean. The abundance of warm-water taxa increased in the late Oligocene, in association with an increase in species diversity, and this may reflect a warming of the surface waters in the late Oligocene. An abrupt increase in the abundance of cool-water taxa (from ~20% to over 90%) occurred from 36.3 to 35.9 Ma at high-latitude Site 748. Coincident with this event was a ~1.0 per mil positive shift in the delta18O value of planktonic foraminifers and the occurrence of ice-rafted debris. This abrupt change in the nannofossil population is a useful biostratigraphic event for locating the bottom of magnetic Subchron C13N in the Southern Ocean. The sharp increase in cool-water taxa coeval with a large positive shift in delta18O values suggests that the high-latitude surface waters drastically cooled around 36.3-35.9 Ma. The temperature drop is estimated to be 4°C or more at Site 748 based on the nannofossil population change relative to the latitudinal biogeographic gradient established in the South Atlantic Ocean during previous studies. Consequently, much of the delta18O increase at Site 748 appears to be due to a temperature drop in the high latitudes rather than an ice-volume signal. The ~0.1 per mil delta18O increase not accounted for by the temperature drop is attributed to an ice-volume increase of 4.6 * 10**3 km**3, or 20% the size of the present Antarctic ice sheet.