945 resultados para TREATED WASTEWATER REUSE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO(3)(-)-N in soil and nitrate (NO(3)(-)) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs(804-1622 kg N ha(-1)) greater than exported N (463-597 kg N ha(-1)). Hence, throughout the irrigation period, high NO(3)(-) concentrations (up to 388 mg L(-1) at T200) and DOC (up to 142 mg L(-1) at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Agricultural reuse of treated sewage effluent (TSE) is an environmental and economic practice; however, little is known about its effects on the characteristics and microbial function in tropical soils. The effect of surplus irrigation of a pasture with TSE, in a period of 18 months, was investigated, considering the effect of 0% surplus irrigation with TSE as a control. In addition, the experiment consisted of three surplus treatments (25%, 50%, and 100% excess) and a nonirrigated pasture area (SE) to compare the soil microbial community level physiological profiles, using the Biolog method. The TSE application increased the average substrate consumption of the soil microbial community, based on the kinetic parameters of the average well color development curve fitting. There were no significant differences between the levels of surplus irrigation treatments. Surplus TSE pasture irrigation caused minor increases in the physiological status of the soil microbial community but no detectable damage to the pasture or soil.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigated the ionic speciation of reclaimed urban wastewater (RWW), and the impact of increasing RWW irrigation rates on soil properties and plant nutrition under field conditions. Most RWW elements (>66%) are readily available as NH(4)(+), Ca(2+), Mg(2+), K(+), SO(4)(2-), Cl(-), H(3)BO(3), Mn(2+) and Zn(2+), but in imbalanced proportion for plant nutrition. Lead, Cd, Cr and Al in RWW are mostly bounded with DOM or OH. Irrigation with RWW decreased soil acidity, which is beneficial to the acidic tropical soil. Although RWW irrigation builds exchangeable Na(+) up, the excessive Na(+) was leached out of the soil profile after a rainy summer season (>400 mm). Benefits of the disposal of RWW to the soil under tropical conditions were discussed, however, the over irrigation with RWW (>100% of crop evapotranspiration) led to a nutritional imbalance, accumulating S and leading to a plant deficiency of P and K. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Changes in soil sodicity-salinity parameters are one of the most characteristic alterations after treated sewage effluent (TSE) irrigation in agro-systems. Considering the importance of these parameters for agricultural management, as well as the economical value of sugarcane for Brazil, the present study aimed at evaluating effects on soil sodicity and salinity under tropical conditions over 16 months of TSE irrigation in a sugarcane plantation at Lins, Sao Paulo State, Brazil. Soil samplings were carried out in February 2005 (before planting), December 2005 (after 8 months of TSE irrigation) and September 2006 (after 16 months of TSE irrigation) following a complete block design with four treatments and four replicates. Treatments consisted of. (i) control, without TSE irrigation; (ii) T100, T150 and T200, with TSE irrigation supplying 100% (0% surplus, total of 2524 mm), 150% (50% surplus, total of 3832 mm) and 200% (100% surplus, total of 5092 mm) of crop water demand, respectively. Compared to initial soil conditions, at the end of the experiment increases of exchangeable sodium (from 2.4 to 5.9 mmol(c) kg(-1)), exchangeable sodium percentage (ESP) (from 8 to 18%), soluble Na (from 1.4 to 4.7 mmol L(-1)) and sodium adsorption ratio (SAR) of soil solution (from 3.6 to 12.6 (mmol were found in the soil profile (0-100 cm) as an average for the irrigated plots due to high SAR of TSE. Associated with the increments were mostly significant increases in clay dispersion rates at depths 0-10, 10-20 and 20-40 cm. Electrical conductivity (EC) of soil solution increased during the TSE irrigation period whereas at the end of the experiment, after short term discontinuation of irrigation and harvest, EC in the topsoil (0-10 and 10-20 cm) decreased compared to the previous samplings. Moreover, despite increasing sodicity over time mainly insignificant differences within the different irrigated treatments were found in December 2005 and September 2006. This suggests that independent of varying irrigation amounts the increasing soil sodicity over time were rather caused by the continuous use of TSE than by its quantity applied. Moreover, also plant productivity showed no significant differences within the TSE irrigated plots. The study indicates that monitoring as well as remediation of soil after TSE irrigation is required for a sustainable TSE use in order to maintain agricultural quality parameters. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wastewater control at storage terminals of liquid chemical products in bulk is very difficult because of the variety of products handled in the facilities generating effluents of variable composition. The main objective of this work was to verify if the Vibrio fischeri acute toxicity test could be routinely included in the wastewater management of those facilities along with physical and chemical analysis in order to evaluate and improve the quality of the generated effluents. The study was performed in two phases before and after the implementation of better operational practices/treatment technologies. Chemical oxygen demand (COD) and toxicity of treated effluents did not correlate showing that effluents with low COD contain toxic substances and non-biodegradable organic matter, which may be not degraded when discharged into the aquatic environment. Segregation of influents or pre-treatment based on toxicity results and biodegradability index were implemented in the facilities generating significant improvements in the quality of final effluents with reduction of Biochemical oxygen demand (BOD) and toxicity. The integration of physical and chemical analysis with the V.fischeri toxicity test turned out to be an excellent tool for wastewater management in chemical terminals allowing rapid decision making for pollution control and prevention measures. Reuse of rain water was also proposed and when implemented by the facilities resulted in economical and environmental benefits. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aimed at evaluating the effect of increasing organic loading rates and of enzyme pretreatment on the stability and efficiency of a hybrid upflow anaerobic sludge blanket reactor (UASBh) treating dairy effluent. The UASBh was submitted to the following average organic loading rates (OLR) 0.98 Kg.m(-3).d(-1), 4.58 Kg.m(-3).d(-1), 8.89 Kg.m(-3).d(-1) and 15.73 Kg.m(-3).d(-1), and with the higher value, the reactor was fed with effluent with and without an enzymatic pretreatment to hydrolyze fats. The hydraulic detention time was 24 h, and the temperature was 30 +/- 2 degrees C. The reactor was equipped with a superior foam bed and showed good efficiency and stability until an OLR of 8.89 Kg.m(-3).d(-1). The foam bed was efficient for solid retention and residual volatile acid concentration consumption. The enzymatic pretreatment did not contribute to the process stability, propitiating loss in both biomass and system efficiency. Specific methanogenic activity tests indicated the presence of inhibition after the sludge had been submitted to the pretreated effluent It was concluded that continuous exposure to the hydrolysis products or to the enzyme caused a dramatic drop in the efficiency and stability of the process, and the single exposure of the biomass to this condition did not inhibit methane formation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The stabilization of swine wastewaters from swine confined housing by the combination of a upflow anaerobic sludge blanket (UASB) reactor and waste stabilization ponds is a viable alternative to minimize the environmental impact caused by inadequate disposal of swine wastewaters. In the present study, the polluting load of pre-decanted swine wastewater treated with a series of two 0.705 m(3) UASB reactors and then in parallel in aerated and non-aerated stabilization tanks was investigated from January to July, 2000. Physicochemical and microbiological analyses were made adopting standard methods (Standard Methods for Examination of Water and Wastewater, 19th ed., American Public Health Association, Washington, DC, 1995). COD values decreased as the wastewater ran through the integrated biodigestion system dropping from about 3492 +/- 511-4094 mg l(-1) +/- 481 to 124 +/- 52-490 mg l(-1) +/- 230, while nitrate and nitrite levels increased in stabilization tanks, ranging respectively from 4 +/- 0 to 20 mg l(-1) +/- 3 and 3 +/- 1 to 11 mg l(-1) +/- 24. Although the removal of Escherichia coli was more than 97% +/- 6, the effluents of the treatment system still contained unacceptable levels of E. coli (1.6 x 10(3)-1.2 x 10(6) 100 ml(-1)) according to WHO guidelines for use of wastewater in agriculture and aquaculture. These results indicate the necessity of changes on operational characteristics of the treatment system such as an increase of the hydraulic retention time in UASB reactors or in stabilization tanks. (C) 2003 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work evaluated the performance of two treatment systems in reducing indicators of biological contamination in swine production wastewater. System I consisted of two upflow anaerobic sludge blanket (UASB) reactors, with 510 and 209 L in volume, being serially arranged. System II consisted of a UASB reactor, anaerobic filter, trickling filter, and decanter, being also organized in series, with volumes of 300, 190, 250, and 150 L, respectively. Hydraulic retention times (HRT) applied in the first UASB reactors were 40, 30, 20, and 11 h in systems I and II. The average removal efficiencies of total and thermotolerant coliforms in system I were 92.92% to 99.50% and 94.29% to 99.56%, respectively, and increased in system II to 99.45% to 99.91% and 99.52% to 99.93%, respectively. Average removal rates of helminth eggs in system I were 96.44% to 99.11%, reaching 100% as in system II. In reactor sludge, the counts of total and thermotolerant coliforms ranged between 10(5) and 10(9) MPN (100 mL)(-1), while helminth eggs ranged from 0.86 to 9.27 eggs g(-1) TS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contract 68-02-2257.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.

The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.

In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.

I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.

Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wastewater containing several dyes, including sulfur black from the dyeing process in a textile mill, was treated using a UV/H(2)O(2) process. The wastewater was characterized by a low BOD/ COD ratio, intense color and high acute toxicity to the algae species Pseudokirchneriella subcaptata. The influence of the pH and H(2)O(2) concentration on the treatment process was evaluated by a full factorial design 2(2) with three replicates of the central experiment. The removal of aromatic compounds and color was improved by an increase in the H(2)O(2) concentration and a decrease in pH. The best results were obtained at pH 5.0 and 6 g L(-1). With these conditions and 120 min of UV irradiation, the removal of the color, aromatic compounds and COD were 74.1, 55.1 and 44.8%, respectively. Under the same conditions, but using a photoreactor covered with aluminum foil, the removal of the color, aromatic compounds and COD were 92.0, 77.6 and 59.4%, respectively. Moreover, the use of aluminum foil reduced the cost of the treatment by 40.8%. These results suggest the potential application of reflective materials as a photoreactor accessory to reduce electric energy consumption during the UV/H(2)O(2) process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation was performed regarding the application of a mechanically stirred anaerobic sequencing batch biofilm reactor containing immobilized biomass on inert polyurethane foam (AnSBBR) to the treatment of soluble metalworking fluids to remove organic matter and produce methane. The effect of increasing organic matter and reactor fill time, as well as shock load, on reactor stability and efficiency have been analyzed. The 5-L AnSBBR was operated at 30 A degrees C in 8-h cycles, agitation of 400 rpm, and treated 2.0 L effluent per cycle. Organic matter was increased by increasing the influent concentration (500, 1,000, 2,000, and 3,000 mg chemical oxygen demand (COD)/L). Fill times investigated were in the batch mode (fill time 10 min) and fed-batch followed by batch (fill time 4 h). In the batch mode, organic matter removal efficiencies were 87%, 86%, and 80% for influent concentrations of 500, 1,000, and 2,000 mgCOD/L (1.50, 3.12, and 6.08 gCOD/L.d), respectively. At 3,000 mgCOD/L (9.38 gCOD/L.d), operational stability could not be achieved. The reactor managed to maintain stability when a shock load twice as high the feed concentration was applied, evidencing the robustness of the reactor to potential concentration variations in the wastewater being treated. Increasing the fill time to 4 h did not improve removal efficiency, which was 72% for 2,000 mgCOD/L. Thus, gradual feeding did not improve organic matter removal. The concentration of methane formed at 6.08 gCOD/L was 5.20 mmolCH(4), which corresponded to 78% of the biogas composition. The behavior of the reactor during batch and fed-batch feeding could be explained by a kinetic model that considers organic matter consumption, production, and consumption of total volatile acids and methane production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of an experimental project on the treatment of bleach plant effluents the results of biodegradability and toxicity assessment of effluents from a bench-scale horizontal anaerobic immobilized bioreactor (HAIB) are discussed in this paper. The biodegradability of the bleach plant effluents from a Kraft pulp mill treated in the HAIB was evaluated using the modified Zahn-Wellens test. The inoculum came from a pulp mill wastewater treatment plant and the dissolved organic carbon (DOC) was used as the indicator of organic matter removal. The acute and chronic toxicity removal during the anaerobic treatment was estimated using Daphnia similis and Ceriodaphnia silvestrii respectively. Moreover, the evaluation of chromosome aberrations (CA), micronucleus frequencies (MN) and mitotic index (IM) in Allium cepa cells were used as genotoxicity indicators. The results indicate that the effluents from the anaerobic reactor are amenable to aerobic polishing. Acute and chronic toxicity were reduced by 90 and 81%, respectively. The largest CA and MN incidence in the meristematic cells of A. cepa were observed after exposure to the raw bleach plant effluent. The HAIB was able to reduce the acute and chronic toxicity as well as chromosome aberrations and the occurrence of micronucleus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cyanobacterial population in the Cajati waste stabilization pond system (WSP) from Sao Paulo State, Brazil was assessed by cell isolation and direct microscope counting techniques. Ten strains, belonging to five genera (Synechococcus, Merismopedia, Leptolyngbya, Limnothrix, and Nostoc), were isolated and identified by morphological and molecular analyses. Morphological identification of the isolated strains was congruent with their phylogenetic analyses based on 16S rDNA gene sequences. Six cyanobacterial genera (Synechocystis, Aphanocapsa, Merismopedia, Lyngbya, Phormidium, and Pseudanabaena) were identified by direct microscope inspection. Both techniques were complementary, since, of the six genera identified by direct microscopic inspection, only Merismopedia was isolated, and the four other isolated genera were not detected by direct inspection. Direct microscope counting of preserved cells showed that cyanobacteria were the dominant members (> 90%) of the phytoplankton community during both periods evaluated (summer and autumn). ELISA tests specific for hepatotoxicmicrocystins gave positive results for six strains (Synechococcus CENA108, Merismopedia CENA106, Leptolyngbya CENA103, Leptolyngbya CENA112, Limnothrix CENA109, and Limnothrix CENA110), and for wastewater samples collected from raw influent (3.70 mu g microcystins/l) and treated effluent (3.74 mu g microcystins/l) in summer. Our findings indicate that toxic cyanobacteria in WSP systems are of concern, since the treated effluent containing cyanotoxins will be discharged into rivers, irrigation channels, estuaries, or reservoirs, and can affect human and animal health.