993 resultados para TOBACCO PLANTS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Coffee Genome Project made available to the scientific community relevant information that made practical the identification and cloning of important genes, as well as the identification of the major sequences involved on their regulation. The aim of the present study was to amplify, clone and sequence coffee promoters with specific expression patterns. For that, coffee ESTs which known expression profiles were employed. First, the promoter regions of coffee genes showing, respectively, fruitspecific and ubiquitous expression were amplified using the Genome Walking strategy. Amplified sequences were then inserted in the pGEM-Teasy vector (Promega) and sequenced. Once completed the sequencing, an expression cassette was constructed using the binary vector pCAMBIA-1381z (Cambia). These expression cassettes were cloned into Agrobacterium tumefaciens, and transgenic tobacco plants were generated aiming the functional characterization of these promoters

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Genética) - IBB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The larval endoparasitoid Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae) has a toolbox of biological weapons to secure for host colonization and the successful parasitization of its host Heliothis virescens (F.) (Lepidoptera: Noctuidae). The cDNA of a putative chitinase has been previously isolated and initially characterized from teratocytes of this parasitoid among the plethora of molecules available in the venom and calyx fluids injected by females, oral and/or anal secretions released by the parasitoid larvae and/or produced by the expression of genes of the symbiotic associated polydnavirus. This putative chitinase has been initially associated with the host cuticle digestion to allow for parasitoid egression and with the asepsis of the host environment, acting as an antimicrobial. As chitinases are commonly expressed in plants against plant pathogens, the chitinase derived from the teratocytes of T. nigriceps is a potential tool for the development of insect pest control methods based on the disruption of the perithrophic membrane of herbivores. Therefore, we aimed to characterize the activity of the putative chitinase from teratocytes of T. nigriceps (Tnchi) produced using the Escherichia coli expression system and its potential to control H. virescens larvae when expressed into transgenic tobacco plants. The purified E. coli-produced Tnchi protein showed no chitinolitic activity, but was active in binding with colloidal and crystalline chitins in water and with colloidal chitin in buffered solution (pH = 6.74). Transgenic tobacco plants showed no enhanced chitinolitic activity relative to control plants, but survival of three-day old larvae of H. virescens was severely affected when directly fed on transgenic tobacco leaves expressing the recombinant Tnchi protein. Some properties of the Tnchi protein and the potential use of Tnchi-transgenic plants to control plant pests are discussed. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Leaf-cutting ants collect plant fresh material for the cultivation of their mutualistic fungus. Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae) cause great economic losses through their foraging activity, mainly in agriculture. The main control method is the application of granulated toxic baits incorporated with an active ingredient (AI). The present goal is to evaluate the effect of caffeine on in vitro growth of the mutualistic fungus and on the survival of the leaf-cutting ants, aiming to verify the potential toxicity of this secondary metabolite over these organisms. RESULTS: Three distinct patterns of fungal growth correlated with caffeine concentration were observed: (1) no effect (0.01% caffeine); (2) intermediate growth reduction (0.05% caffeine); (3) drastic growth reduction (0.10 and 0.50% caffeine). The highest caffeine concentration causes fungus death in the first week. As for insect survival, caffeine does not seem to exert any effect. The treatments with diet containing caffeine showed similar values of M50, irrespective of caffeine concentration. CONCLUSION: As caffeine was shown to reduce growth of the mutualistic fungus of Atta sexdens rubropilosa, but with no conclusive effect on insect survival, a hypothetical explanation for the selection of different Coffea species by this leaf-cutting ant species might be associated with caffeine toxicity to the fungus. Copyright (C) 2011 Society of Chemical Industry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of our work was to study the molecular mechanisms involved in symptoms appearance of plants inoculated either with a virus or with a virus-satellite complex. In the first case, we tried to set up a reliable method for an early identification of PVYNTN strains present in Italy and causing potato tuber necrosis. This, to prevent their spread in the field and to avoid severe yield losses, especially in seed potato production. We tried to localize the particular genomic region responsible for tuber necrosis. To this purpose, we carried out RT-PCR experiments using various primer combinations, covering PVY genomic regions larger than those previously used by other authors. As the previous researchers, though, we were not able to differentiate all NTN from others PVY strains. This probably because of the frequent virus variability, due to both genomic mutations and possible recombination events among different strains. In the second case, we studied the influence of Y-sat (CaRNA5 satellite) on symptoms of CMV (Cucumber mosaic virus) in Nicotiana benthamiana plants: strong yellowing appearance instead of simple mosaic. Wang et al (2004), inoculating the same infectious complex on tobacco plants transformed with a viral suppressor of plant silencing (HC-PRO), did not experience the occurrence of yellowing anymore and, therefore, hypotesized that changes in symptoms were due to plant post transcriptional gene silencing (PTGS) mechanism. In our case, inoculation of N. benthamiana plants transformed with another PTGS viral suppressor (p19), and other plants defective for RNA polymerase 6 (involved in systemic silencing), still resulted in yellowing appearance. This, to our opinion, suggests that in our system another possible mechanism is involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein hydrolysis plays an important role during seed germination and post-germination seedling establishment. In Arabidopsis thaliana, cathepsin B-like proteases are encoded by a gene family of three members, but only the AtCathB3 gene is highly induced upon seed germination and at the early post-germination stage. Seeds of a homozygous T-DNA insertion mutant in the AtCathB3 gene have, besides a reduced cathepsin B activity, a slower germination than the wild type. To explore the transcriptional regulation of this gene, we used a combined phylogenetic shadowing approach together with a yeast one-hybrid screening of an arrayed library of approximately 1200 transcription factor open reading frames from Arabidopsis thaliana. We identified a conserved CathB3-element in the promoters of orthologous CathB3 genes within the Brassicaceae species analysed, and, as its DNA-interacting protein, the G-Box Binding Factor1 (GBF1). Transient overexpression of GBF1 together with a PAtCathB3::uidA (β-glucuronidase) construct in tobacco plants revealed a negative effect of GBF1 on expression driven by the AtCathB3 promoter. In stable P35S::GBF1 lines, not only was the expression of the AtCathB3 gene drastically reduced, but a significant slower germination was also observed. In the homozygous knockout mutant for the GBF1 gene, the opposite effect was found. These data indicate that GBF1 is a transcriptional repressor of the AtCathB3 gene and affects the germination kinetics of Arabidopsis thaliana seeds. As AtCathB3 is also expressed during post-germination in the cotyledons, a role for the AtCathB3-like protease in reserve mobilization is also inferred.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we describe the isolation of a new cDNA encoding an NADP-dependent isocitrate dehydrogenase (ICDH). The nucleotide sequence in its 5′ region gives a deduced amino acid sequence indicative of a targeting peptide. However, even if this cDNA clearly encodes a noncytosolic ICDH, it is not possible to say from the targeting peptide sequence to which subcellular compartment the protein is addressed. To respond to this question, we have transformed tobacco plants with a construct containing the entire targeting signal-encoding sequence in front of a modified green fluorescent protein (GFP) gene. This construct was placed under the control of the cauliflower mosaic virus 35S promoter, and transgenic tobacco plants were regenerated. At the same time, and as a control, we also have transformed tobacco plants with the same construct but lacking the nucleotide sequence corresponding to the ICDH-targeting peptide, in which the GFP is retained in the cytoplasm. By optical and confocal microscopy of leaf epiderm and Western blot analyses, we show that the putative-targeting sequence encoded by the cDNA addresses the GFP exclusively into the mitochondria of plant cells. Therefore, we conclude that this cDNA encodes a mitochondrial ICDH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ngrol genes (NgrolB, NgrolC, NgORF13, and NgORF14) that are similar in sequence to genes in the left transferred DNA (TL-DNA) of Agrobacterium rhizogenes have been found in the genome of untransformed plants of Nicotiana glauca. It has been suggested that a bacterial infection resulted in transformation of Ngrol genes early in the evolution of the genus Nicotiana. Although the corresponding four rol genes in TL-DNA provoked hairy-root syndrome in plants, present-day N. glauca and plants transformed with Ngrol genes did not exhibit this phenotype. Sequenced complementation analysis revealed that the NgrolB gene did not induce adventitious roots because it contained two point mutations. Single-base site-directed mutagenesis at these two positions restored the capacity for root induction to the NgrolB gene. When the NgrolB, with these two base substitutions, was positioned under the control of the cauliflower mosaic virus 35S promoter (P35S), transgenic tobacco plants exhibited morphological abnormalities that were not observed in P35s-RirolB plants. In contrast, the activity of the NgrolC gene may have been conserved after an ancient infection by bacteria. Discussed is the effect of the horizontal gene transfer of the Ngrol genes and mutations in the NgrolB gene on the phenotype of ancient plants during the evolution of N. glauca.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plants contain RNA-dependent RNA polymerase (RdRP) activities that synthesize short cRNAs by using cellular or viral RNAs as templates. During studies of salicylic acid (SA)-induced resistance to viral pathogens, we recently found that the activity of a tobacco RdRP was increased in virus-infected or SA-treated plants. Biologically active SA analogs capable of activating plant defense response also induced the RdRP activity, whereas biologically inactive analogs did not. A tobacco RdRP gene, NtRDRP1, was isolated and found to be induced both by virus infection and by treatment with SA or its biologically active analogs. Tobacco lines deficient in the inducible RDRP activity were obtained by expressing antisense RNA for the NtRDRP1 gene in transgenic plants. When infected by tobacco mosaic virus, these transgenic plants accumulated significantly higher levels of viral RNA and developed more severe disease symptoms than wild-type plants. After infection by a strain of potato virus X that does not spread in wild-type tobacco plants, the transgenic NtRDRP1 antisense plants accumulated virus and developed symptoms not only locally in inoculated leaves but also systemically in upper uninoculated leaves. These results strongly suggest that inducible RdRP activity plays an important role in plant antiviral defense.