803 resultados para TITANIUM CARBIDES
Resumo:
This work describes the influence of a high annealing temperature of about 700C on the Si(substrate)/Si3N4/TiOx/Pt/LiCoO2 multilayer system for the fabrication of all-solid-state lithium ion thin film microbatteries. Such microbatteries typically utilize lithium cobalt oxide (LiCoO2) as cathode material with a platinum (Pt) current collector. Silicon nitride (Si3N4) is used to act as a barrier against Li diffusion into the substrate. For a good adherence between Si3N4 and Pt, commonly titanium (Ti) is used as intermediate layer. However, to achieve crystalline LiCoO2 the multilayer system has to be annealed at high temperature. This post-treatment initiates Ti diffusion into the Pt-collector and an oxidation to TiOx, leading to volume expansion and adhesion failures. To solve this adhesion problem, we introduce titanium oxide (TiOx) as an adhesion layer, avoiding the diffusion during the annealing process. LiCoO2, Pt and Si3N4 layers were deposited by magnetron sputtering and the TiOx layer by thermal oxidation of Ti layers deposited by e-beam technique. Asdeposited and annealed multilayer systems using various TiOx layer thicknesses were studied by scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS). The results revealed that an annealing process at temperature of 700C leads to different interactions of Ti atoms between the layers, for various TiOx layer thicknesses (25–45 nm).
Resumo:
The use of cages of different material and shapes for cervical discectomy with fusion (ACDF) has increased during the last few years. The use of additional osteogenic material is controversial. We prospectively evaluated an empty, Plasmapore-covered titanium cage (PCTC) in 45 patients undergoing 58 ACDFs. Patients were evaluated using standard clinical and radiological criteria. Good to excellent outcome was achieved in 93%, 78% and 75% after 3, 12 and 48 months, respectively. Sixty-five percent of patients could resume their prior work after 48 months. Disc space height and lordosis could be preserved in all cases. Two percent of the treated levels showed subsidence and 2% increased segmental motion. There were no procedure-related complications. Implantation of an empty PCTC after microsurgical anterior cervical discectomy is a safe procedure with good results and low incidence of complications. Disc height and lordosis can be preserved with low incidence of subsidence and good fusion rates.
Resumo:
The nature of the chemical bond in three titanium oxides of different crystal structure and different formal oxidation state has been studied by means of the ab initio cluster-model approach. The covalent and ionic contributions to the bond have been measured from different theoretical techniques. All the analysis is consistent with an increasing of covalence in the TiO, Ti2O3, and TiO2 series as expected from chemical intuition. Moreover, the use of the ab initio cluster-model approach combined with different theoretical techniques has permitted us to quantify the degree of ionic character, showing that while TiO can approximately be described as an ionic compound, TiO2 is better viewed as a rather covalent oxide.
Resumo:
The aim of this study was to prospectively evaluate the accuracy and predictability of new three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction.We analyzed the preoperative and postoperative clinical and radiologic data of 10 patients with isolated blow-out orbital fractures. Fracture locations were as follows: floor (N = 7; 70%), medial wall (N = 1; 1%), and floor/medial wall (N = 2; 2%). The floor fractures were exposed by a standard transconjunctival approach, whereas a combined transcaruncular transconjunctival approach was used in patients with medial wall fractures. A three-dimensional preformed AO titanium mesh plate (0.4 mm in thickness) was selected according to the size of the defect previously measured on the preoperative computed tomographic (CT) scan examination and fixed at the inferior orbital rim with 1 or 2 screws. The accuracy of plate positioning of the reconstructed orbit was assessed on the postoperative CT scan. Coronal CT scan slices were used to measure bony orbital volume using OsiriX Medical Image software. Reconstructed versus uninjured orbital volume were statistically correlated.Nine patients (90%) had a successful treatment outcome without complications. One patient (10%) developed a mechanical limitation of upward gaze with a resulting handicapping diplopia requiring hardware removal. Postoperative orbital CT scan showed an anatomic three-dimensional placement of the orbital mesh plates in all of the patients. Volume data of the reconstructed orbit fitted that of the contralateral uninjured orbit with accuracy to within 2.5 cm(3). There was no significant difference in volume between the reconstructed and uninjured orbits.This preliminary study has demonstrated that three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction results in (1) a high rate of success with an acceptable rate of major clinical complications (10%) and (2) an anatomic restoration of the bony orbital contour and volume that closely approximates that of the contralateral uninjured orbit.
Resumo:
PURPOSE: To prospectively evaluate the accuracy and reliability of "freehand" posttraumatic orbital wall reconstruction with AO (Arbeitsgemeinschaft Osteosynthese) titanium mesh plates by using computer-aided volumetric measurement of the bony orbits. METHODS: Bony orbital volume was measured in 12 patients from coronal CT scan slices using OsiriX Medical Image software. After defining the volumetric limits of the orbit, the segmentation of the bony orbital region of interest of each single slice was performed. At the end of the segmentation process, all regions of interest were grouped and the volume was computed. The same procedure was performed on both orbits, and thereafter the volume of the contralateral uninjured orbit was used as a control for comparison. RESULTS: In all patients, the volume data of the reconstructed orbit fitted that of the contralateral uninjured orbit with accuracy to within 1.85 cm3 (7%). CONCLUSIONS: This preliminary study has demonstrated that posttraumatic orbital wall reconstruction using "freehand" bending and placement of AO titanium mesh plates results in a high success rate in re-establishing preoperative bony volume, which closely approximates that of the contralateral uninjured orbit.
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The Cerium (IV) and Titanium (IV) oxides mixture (CeO2-3TiO2) was prepared by thermal treatment of the oxochloroisopropoxide of Cerium (IV) and Titanium (IV). The chemical route utilizing the Cerium (III) chloride alcoholic complex and Titanium (IV) isopropoxide is presented. The compound Ce5Ti15Cl16O30 (iOPr)4(OH-Et)15 was characterized by elemental analysis, FTIR and TG/DTG. The X-ray diffraction patterns of the oxides resulting from the thermal decomposition of the precursor at 1000 °C for 36 h indicated the formation of cubic cerianite (a = 5.417Å) and tetragonal rutile (a = 4.592Å) and (c = 2.962 Å), with apparent crystallite sizes around 38 and 55nm, respectively.
Resumo:
This dissertation "Identification of turning points in the research on titanium dioxide production and application" aims at detecting in scientific literatures emerging trends and sudden changes in titanium dioxide production and application. These key changes are then studied to determine its transient patterns and its effect on the research on titanium dioxide production and application The source of information is from bibliographic data which discussed titanium dioxide production and application. These bibliographic data where obtained from ISI Web of Knowledge and then formed into a network of clusters by applying software called Citespace.
Resumo:
The stereoselective addition of the titanium (IV) enolates derived from (S)-4-isopropyl-N-4-chlorobutyryl-1,3-thiazolidine-2-thione (8) and from (S)-4-isopropyl-N-4-chloropentanoyl-1,3-thiazolidine-2-thione (9) to N-Boc-2-methoxypyrrolidine (5b) afforded the addition products (+)-10 and (+)-11 in 84% yield in both cases, as 8.6:1 and 10:1 diastereoisomeric mixtures, respectively. A three-step sequence allowed to convert these adducts to (+)-isoretronecanol (1) and (+)-5-epi-tashiromine (2) in 43% and 49% overall yield, respectively.
Resumo:
The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.