935 resultados para THREATENED SPECIES
Resumo:
Capercaillie, Tetrao urogallus, is a threatened species in central Europe, and Swiss populations declined 40 to 50 % between 1970 and 1985. Capercaillie are sensitive to forest structure, and loss of habitat is a major cause of their decline. Knowledge of habitat characteristics is therefore essential for capercaillie conservation. Here, we present models predicting capercaillie probability of occurrence, based on relevant structural habitat variables. Models were built using multiple logistic regression analyses on capercaillie presence/absence data. Vegetation survey was carried out in July 1999 in a 170-km2 forested area (Jura mountains, canton de Vaud, western Switzerland) inhabited by capercaillie and presence/absence of the species was assessed according to dropping presence/absence. The survey was based on 10-m-radius sample plots each in a 1-km2 forest patch (n = 76 with capercaillie droppings, n = 80 without). A first model included seven out of 27 measured habitat variables and a second model only four. The latter model best represents practical needs. It includes three variables which had a negative impact on capercaillie presence: tree and shrub covers and spruce, Picea excelsa, shrub cover, and one which had a positive effect: bilberry, Vaccinium myrtillus, cover, highlighting that capaercaillie selected open forest with high bilberry abundance. The model can be used to map potential capercaillie habitat distribution and to manage the habitat in favour of capercaillie (protection and adapted forestry practices) in the Swiss Jura mountains.
Resumo:
Detailed large-scale information on mammal distribution has often been lacking, hindering conservation efforts. We used the information from the 2009 IUCN Red List of Threatened Species as a baseline for developing habitat suitability models for 5027 out of 5330 known terrestrial mammal species, based on their habitat relationships. We focused on the following environmental variables: land cover, elevation and hydrological features. Models were developed at 300 m resolution and limited to within species' known geographical ranges. A subset of the models was validated using points of known species occurrence. We conducted a global, fine-scale analysis of patterns of species richness. The richness of mammal species estimated by the overlap of their suitable habitat is on average one-third less than that estimated by the overlap of their geographical ranges. The highest absolute difference is found in tropical and subtropical regions in South America, Africa and Southeast Asia that are not covered by dense forest. The proportion of suitable habitat within mammal geographical ranges correlates with the IUCN Red List category to which they have been assigned, decreasing monotonically from Least Concern to Endangered. These results demonstrate the importance of fine-resolution distribution data for the development of global conservation strategies for mammals.
Resumo:
The main channel of Upper Buffalo Creek has been identified on Iowa's 303(d) List of Impaired Waters as having a biological impairment (i.e., greater than 50% decrease in mussel species) due to habitat modification, stream alteration, nutrients, and/or siltation. The Buchanan County SWCD has identified this as a priority watershed because mussel population decreases have been well documented to be directly associated with decreases in ecological value, recreational value, and overall water quality. The presence of a diverse and reproducing mussel population indicates that a healthy aquatic ecosystem is intact, which means good fishing, good water quality for wildlife, and assurance that water is safe for recreation. Dan Cohen, Buchanan Conservation Board Director, stated that "should water quality conditions improve, and fishing holes and habitat be enhanced, there is no doubt that many people would take advantage of the renewed recreational opportunities". This watershed contains two "threatened" species of mussels and five "sensitive" species of fish. The District feels that a watershed project will assist in implementing conservation practices that will greatly improve water quality and enhance biological and recreational venues.
Resumo:
This thesis examines the local and regional scale determinants of biodiversity patterns using existing species and environmental data. The research focuses on agricultural environments that have experienced rapid declines of biodiversity during past decades. Existing digital databases provide vast opportunities for habitat mapping, predictive mapping of species occurrences and richness and understanding the speciesenvironment relationships. The applicability of these databases depends on the required accuracy and quality of the data needed to answer the landscape ecological and biogeographical questions in hand. Patterns of biodiversity arise from confounded effects of different factors, such as climate, land cover and geographical location. Complementary statistical approaches that can show the relative effects of different factors are needed in biodiversity analyses in addition to classical multivariate models. Better understanding of the key factors underlying the variation in diversity requires the analyses of multiple taxonomic groups from different perspectives, such as richness, occurrence, threat status and population trends. The geographical coincidence of species richness of different taxonomic groups can be rather limited. This implies that multiple geographical regions should be taken into account in order to preserve various groups of species. Boreal agricultural biodiversity and in particular, distribution and richness of threatened species is strongly associated with various grasslands. Further, heterogeneous agricultural landscapes characterized by moderate field size, forest patches and non-crop agricultural habitats enhance the biodiversity of rural environments. From the landscape ecological perspective, the major threats to Finnish agricultural biodiversity are the decline of connected grassland habitat networks, and general homogenization of landscape structure resulting from both intensification and marginalization of agriculture. The maintenance of key habitats, such as meadows and pastures is an essential task in conservation of agricultural biodiversity. Furthermore, a larger landscape context should be incorporated in conservation planning and decision making processes in order to respond to the needs of different species and to maintain heterogeneous rural landscapes and viable agricultural diversity in the future.
Resumo:
Aquesta publicació és el recull d’un de les treballs dins del projecte “STEPPE-AHEAD: Steppe-land birds, agriculture practices and economic viability: towards the conservation of Threatened species in humanised landscapes”, concedit i finançat per la Fundació General CSIC entre els anys 2011 – 2014, amb l’objectiu de proporcionar noves propostes de sistemes per a la conservació d’aus estepàries en zones agrícoles. La proposta del projecte es basa en l’estudi, en una primera fase, del coneixement dels sistemes agrícoles i els seus sistemes de producció avaluant la seva sostenibilitat ambiental i econòmica. La finalitat és poder desenvolupar estratègies que compatibilitzin l’activitat agrícola amb la conservació de la biodiversitat i en aquest cas especial amb el de les aus estepàries.
Resumo:
Over the past two decades, an increasing amount of phylogeographic work has substantially improved our understanding of African biogeography, in particular the role played by Pleistocene pluvial-drought cycles on terrestrial vertebrates. However, still little is known on the evolutionary history of semi-aquatic animals, which faced tremendous challenges imposed by unpredictable availability of water resources. In this study, we investigate the Late Pleistocene history of the common hippopotamus (Hippopotamus amphibius), using mitochondrial and nuclear DNA sequence variation and range-wide sampling. We documented a global demographic and spatial expansion approximately 0.1-0.3 Myr ago, most likely associated with an episode of massive drainage overflow. These events presumably enabled a historical continent-wide gene flow among hippopotamus populations, and hence, no clear continental-scale genetic structuring remains. Nevertheless, present-day hippopotamus populations are genetically disconnected, probably as a result of the mid-Holocene aridification and contemporary anthropogenic pressures. This unique pattern contrasts with the biogeographic paradigms established for savannah-adapted ungulate mammals and should be further investigated in other water-associated taxa. Our study has important consequences for the conservation of the hippo, an emblematic but threatened species that requires specific protection to curtail its long-term decline.
Resumo:
Although abundant in the number of individuals, the Atlantic salmon may be considered as a threatened species in many areas of its native distribution range. Human activities such as building of power plant dams, offshore overfishing, pollution, clearing of riverbeds for timber floating and badly designed stocking regimes have diminished the distribution of Atlantic salmon. As a result of this, many of the historical populations both in Europe and northern America have gone extinct or are severely depressed. In fact, only 1% of Atlantic salmon existing today are of natural origin, the rest being farmed salmon. All of this has lead to a vast amount of research and many restoration programmes aiming to bring Atlantic salmon back to rivers from where it has vanished. However, many of the restoration programmes conducted thus far have been unsuccessful due to inadequate scientific research or lack of its implementation, highlighting the fact that more research is needed to fully understand the biology of this complex species. The White and Barents Seas in northwest Russia are among the last regions in Europe where Atlantic salmon populations are still stable, thus forming an important source of biodiversity for the entire European region. Salmon stocks from this area are also of immense economic and social importance for the local people in the form of fishing tourism. The main aim of this thesis was to elucidate the post-glacial history and population genetic structure of north European and particularly northwest Russian Atlantic salmon, both of which are aspects of great importance for the management and conservation of the species. Throughout the whole thesis, these populations were studied by utilizing microsatellites as the main molecular tool. One of the most important discoveries of the thesis was the division of Atlantic salmon from the White and Barents Seas into four separate clusters, which has not been observed in previous studies employing nuclear markers although is supported by mtDNA studies. Populations from the western Barents Sea clustered together with the northeast Atlantic populations into a clearly distinguishable group while populations from the White Sea and eastern Barents Sea were separated into three additional groups. This has important conservation implications as this thesis clearly indicates that conservation of populations from all of the observed clusters is warranted in order to conserve as much of the genetic diversity as possible in this area. The thesis also demonstrates how differences in population life histories within a species, migratory behaviour in this case, and in their phylogeographic origin affect the genetic characteristics of populations, namely diversity and divergence levels. The anadromous populations from the Atlantic Ocean, White Sea and Barents Sea possessed higher levels of genetic diversity than the anadromous populations form the Baltic Sea basin. Among the non-anadromous populations the result was the opposite: the Baltic freshwater populations were more variable. This emphasises the importance of taking the life history of a population into consideration when developing conservation strategies: due to the limited possibilities for new genetic diversity to be generated via gene flow, it is expected that freshwater Atlantic salmon populations would be more vulnerable to extinction following a population crash and thus deserve a high conservation status. In the last chapter of this thesis immune relevant marker loci were developed and screened for signatures of natural selection along with loci linked to genes with other functions or no function at all. Also, a novel landscape genomics method, which combines environmental information with molecular data, was employed to investigate whether immune relevant markers displayed significant correlations to various environmental variables more frequently than other loci. Indications of stronger selection pressure among immune-relevant loci compared to non-immune relevant EST-linked loci was found but further studies are needed to evaluate whether it is a common phenomenon in Atlantic salmon.
Resumo:
Abstract: Currently the importance of using alternative strategies for biodiversity conservation is emphasized and since the establishment of germplasm bank is an alternative to the conservation of endangered species. This is a technique of great importance for the maintenance of Brazilian fauna. Since the early70'sthere was a growing concern about the need to preserve essential genetic resources for food and agriculture, mainly for conservation of genetic material from farm animals. Thus was created the Brasilia Zoo, in July 2010, the first Germplasm Bank of Wild Animals in Latin America, as an alternative strategy for the conservation of threatened or endangered species, using both gametes and somatic cells and stem cells. Then we argue to create new banks or research networks among different regions with aimed to tissue preservation.
Resumo:
An area's innate potential to regenerate represents a crucial factor for its conservation and management. The seed rain and seed bank are important agents in the regeneration process. Seed banks are particularly important in communities where there is a high proportion of obligate seeders. Rocky outcrops are habitats where most part of the plant species depends on their seeds to reproduce and maintain viable populations. Therefore, seed banks ought to be important in this vegetation physiognomy. We test the hypotheses that the seed bank of the rocky outcrops found in the rupestrian fields of "Serra do Cipó", Brazil, is richer in species and denser than those formed on different vegetation physiognomies neighboring the outcrops. We then compared species abundance, species richness and composition in the rocky outcrops' seed banks with those of sandy and peaty bogs, forests, gallery forests, and "cerrados". Furthermore, we report on the natural regeneration potential of these soils by assessing a greenhouse study on seedling emergence. Soil samples were collected from 0 to 5 and 5 to 10 cm of depth. Rocky outcrops had the poorest in species and less dense seed bank and showed segregation in species composition. Emergence was greater in the most superficial layer. However, soils on rocky outcrops showed the greatest proportion of endemic threatened species in their seed banks, demonstrating their importance for biodiversity conservation of the "Serra do Cipó" rupestrian fields.
Resumo:
Regnellidium diphyllum has its distribution restricted to Southern Brazil and adjoining localities in Uruguay and Argentina. Currently it is on the list of threatened species of Rio Grande do Sul. The conversion of wetlands into agricultural areas or soil contamination by the introduction of waste products and fertilizers may compromise the establishment and survival of this species. Among the pollutants are heavy metals, such as cadmium (Cd). Megaspores were germinated in liquid culture medium, with concentrations 0 (control), 0.39; 0.78; 1.56; 3.12; 6.25; 12.5; 25; 50 and 100 mg L-1 of Cd, starting from a standard solution of Titrisol® at 1000 mg L-1. The increase of Cd in the growth medium to 50 mg L-1 resulted in low germinability (58%), and no germination was observed on 100 mg L-1. In apomictical sporophytes, the growth of primary root and leaf was significantly reduced and no secondary leaf was formed at Cd concentrations of 12.5 and higher than this. The results indicated that R. diphyllum is tolerant to the presence of Cd up to considerably higher concentrations (0.78 mg L-1) than that normally found in unpolluted aquatic ecosystems (0.01 mg L-1), although the sensitivity to higher concentrations might endanger the establishment and permanence of this species in habitats exposed to contamination with this metal.
Resumo:
A floristic and structural survey of a natural grassland community was conducted on Morro do Osso, a granitic hill in Porto Alegre, RS, Brazil. Structural data were surveyed in 39 one square meter plots placed over two major grassland areas. An accidental fire has occurred in one of the areas approximately one year prior to our survey, leading to further analysis of parameters differences between sites. The floristic list contains 282 species, whereas the structural survey has found 161 species. Families with highest accumulated importance values were Poaceae, Asteraceae and Fabaceae. The diversity and evenness indexes were 4.51 nats ind-1 and 0.86, respectively. Cluster analysis denoted two groups coinciding with the areas distinguished by the fire disturbance. A similarity analysis between our data and two other data sets from nearby granitic hills resulted in 28% to 35% similarity, with equivalent species-family distribution and many common dominant species, corroborating the concept of a continuous flora along the South Brazilian granitic hills.
Resumo:
(In vitro culture at low temperature and ex vitro acclimatization of Vriesea inflata an ornamental bromeliad). In vitro culture by seeds is a technique for preservation of threatened species because it may provide a large number of plants with genetic diversity. The bromeliad Vriesea inflata (Wawra) Wawra, an ornamental bromeliad, is extensively and illegally collected from the nature and must be preserved. It is possible to form plant threatened collections in vitro by reducing the temperature of culture, while occupying little space, with the consequent reduction of maintenance costs. This work evaluated the influence of temperature on in vitro growth and morphology of plants of V. inflata, with the aim of establishing a slow growth-rate and analyzing the ex vitro acclimatization. Seeds were germinated in vitro in Murashige and Skoog (MS) medium, with macronutrients reduced to 50% (MS/2). After three months the plants were transferred to flasks of new same medium and kept in two germination chambers with the temperature adjusted to 15 °C and to 28 °C. After 24 months the plants were subject to biometric, photosynthetic pigments content and anatomical analyses. Results showed that plants maintained at 15 °C were smaller than those at 28 °C. Nevertheless, there were no alterations in pigments content, anatomy. In both treatments there was a survival rate of 100%. This work showed that plants of this species can be kept in vitro at 15 °C with the aim of forming a slow-growth collection, thereby seeking its preservation, and can be transferred to growth at ex vitro condition to achieved 100% survival rate.
Resumo:
Le béluga du Saint-Laurent est une espèce menacée au Canada et protégée par la Loi sur les espèces en péril du Canada. La détermination des fonctions biologiques de ses habitats essentiels est nécessaire afin d’assurer le rétablissement de la population. Parcs Canada a entamé en 2009 un suivi des proies du béluga dans deux de ses aires de fréquentation intensive situées dans le Parc marin du Saguenay–Saint-Laurent : l’embouchure de la rivière Saguenay et la baie Sainte-Marguerite. L’étude de l’abondance et de la distribution des proies est réalisée par sondage hydroacoustique le long de transects à l’aide d’un échosondeur multifréquences. Un protocole d’observations systématiques du béluga est mené simultanément aux sondages hydroacoustiques à partir de sites terrestres. Le premier objectif de cette étude est de développer la méthodologie concernant le traitement, la classification et la cartographie des données hydroacoustiques échantillonnées. L’objectif principal consiste à déterminer si l’abondance et la distribution des proies pélagiques ont une influence sur l’utilisation de ces deux habitats par le béluga. La cartographie de la biomasse relative de poissons a été réalisée pour la couche de surface, la couche en profondeur et pour l’ensemble de la colonne d’eau par krigeage ordinaire pour les deux habitats pour les 29 transects. À la baie Sainte-Marguerite, le nombre de bélugas observés augmente avec la biomasse relative des proies en surface et en profondeur. À l’embouchure de la rivière Saguenay, les résultats n’ont pas été concluants. Les résultats suggèrent que l’alimentation pourrait être l’une des fonctions biologiques de la baie Sainte-Marguerite.
Resumo:
Actualment una de les principals amenaces a la biodiversitat és la introducció d'espècies. Revisant 26 variables de les 69 espècies de peixos continental de la Península Ibèrica concloem que la filogènia, variabilitat i els usos de l'home són necessaris per entendre millor les diferències entres les espècies natives i invasores. Entre les especies més afectades per la introducció de peixos es troben els ciprinodontiformes endèmics del Mediterrani. Aportem les primers dades sobre l'ús d'hàbitats ocasionalment inundats i la selecció de preses del fartet (Aphanius iberus), observant un canvi ontogenètic, clarament relacionat amb el microhàbitat. També demostrem que la salinitat influeix en l'èxit invasor de la gamúsia, afectant la seva densitat i biologia reproductiva. Per altra banda, demostrem experimentalment que amb l'increment de salinitat la gambúsia disminueix la seva agressivitat i captura menys preses, reduint la seva eficàcia competitiva respecte dels ciprinodonts natius.
Resumo:
The Sardinian mountain newt Euproctus platycephalus, endemic to the island of Sardinia, (Italy), is considered a rare and threatened species and is classed as critically endangered by IUCN. It inhabits streams, small lakes and pools on the main mountain systems of the island. Threats from climatic and anthropogenic factors have raised concerns for the long-term survival of newt populations on the island. MtDNA sequencing was used to investigate the genetic population structure and phylogeography of this endemic species. Patterns of genetic variation were assessed by sequencing the complete Dloop region and part of the 12SrRNA, from 74 individuals representing four different populations. Analyses of molecular variance suggest that populations are significantly differentiated, and the distribution of haplotypes across the island shows strong geographical structuring. However, phylogenetic analyses also suggest that the Sardinian population consists of two distinct mtDNA groups, which may reflect ancient isolation and expansion events. Population structure, evolutionary history of the species and implications for the conservation of newt populations are discussed.