965 resultados para TGF-ß, IL-10, asthma, Treg


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed a comparative study and evaluated cellular infiltrates and anti-inflammatory cytokine production at different time-points after syngeneic or allogeneic skin transplantation. We observed an early IL-10 production in syngeneic grafts compared with allografts. This observation prompted us to investigate the role of IL-10 in isograft acceptance. For this, we used IL-10 KO and WT mice to perform syngeneic transplantation, where IL-10 was absent in the graft or in the recipient. The majority of syngeneic grafts derived from IL-10 KO donors did not engraft or was only partially accepted, whereas IL-10 KO mice transplanted with skin from WT donors accepted the graft. We evaluated IL-10 producers in the transplanted skin and observed that epithelial cells were the major source. Taken together, our data show that production of IL-10 by donor cells, but not by the recipient, is determinant for graft acceptance and strongly suggest that production of this cytokine by keratinocytes immediately upon transplantation is necessary for isograft survival. J. Leukoc. Biol. 92: 259-264; 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background In human malaria, the naturally-acquired immune response can result in either the elimination of the parasite or a persistent response mediated by cytokines that leads to immunopathology. The cytokines are responsible for all the symptoms, pathological alterations and the outcome of the infection depends on the reciprocal regulation of the pro and anti-inflammatory cytokines. IL-10 and IFN-gamma are able to mediate this process and their production can be affected by single nucleotide polymorphisms (SNPs) on gene of these cytokines. In this study, the relationship between cytokine IL-10/IFN-gamma levels, parasitaemia, and their gene polymorphisms was examined and the participation of pro-inflammatory and regulatory balance during a natural immune response in Plasmodium vivax-infected individuals was observed. Methods The serum levels of the cytokines IL-4, IL-12, IFN-gamma and IL-10 from 132 patients were evaluated by indirect enzyme-linked immunosorbent assays (ELISA). The polymorphism at position +874 of the IFN-gamma gene was identified by allele-specific polymerase chain reaction (ASO-PCR) method, and the polymorphism at position -1082 of the IL-10 gene was analysed by PCR-RFLP (PCR-Restriction Fragment Length Polymorphism). Results The levels of a pro- (IFN-gamma) and an anti-inflammatory cytokine (IL-10) were significantly higher in P. vivax-infected individuals as compared to healthy controls. The IFN-gamma levels in primoinfected patients were significantly higher than in patients who had suffered only one and more than one previous episode. The mutant alleles of both IFN-gamma and IL-10 genes were more frequent than the wild allele. In the case of the IFNG+874 polymorphism (IFN-gamma) the frequencies of the mutant (A) and wild (T) alleles were 70.13% and 29.87%, respectively. Similar frequencies were recorded in IL-10-1082, with the mutant (A) allele returning a frequency of 70.78%, and the wild (G) allele a frequency of 29.22%. The frequencies of the alleles associated with reduced production of both IFN-gamma and IL-10 were high, but this effect was only observed in the production of IFN-gamma. Conclusions This study has shown evidence of reciprocal regulation of the levels of IL-10 and IFN-gamma cytokines in P. vivax malaria, which is not altered by the presence of polymorphism in the IL-10 gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of the platelet-activating factor receptor (PAFR) in macrophages is associated with suppressor phenotype. Here, we investigated the PAFR in murine dendritic cells (DC). Bone marrow-derived dendritic cells (BALB/c) were cultured with GM-CSF and maturation was induced by LPS. The PAFR antagonists (WEB2086, WEB2170, PCA4248) and the prostaglandin (PG) synthesis inhibitors (indomethacin, nimesulide and NS-398) were added before LPS. Mature and immature DCs expressed PAFR. LPS increased MHCII, CD40, CD80, CD86, CCR7 and induced IL-10, IL-12, COX-2 and PGE2 expression. IL-10, COX-2 and PGE2 levels were reduced by PAFR antagonists and increased by cPAF. The IL-10 production was independent of PGs. Mature DCs induced antigen-specific lymphocyte proliferation. PAFR antagonists or PG-synthesis inhibitors significantly increased lymphocyte proliferation. It is proposed that PAF has a central role in regulatory DC differentiation through potentiation of IL-10 and PGE2 production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Cellular immunity is the main defense mechanism in paracoccidioidomycosis (PCM), the most important systemic mycosis in Latin America. Th1 immunity and IFN-γ activated macrophages are fundamental to immunoprotection that is antagonized by IL-10, an anti-inflammatory cytokine. Both in human and experimental PCM, several evidences indicate that the suppressive effect of IL-10 causes detrimental effects to infected hosts. Because direct studies have not been performed, this study was aimed to characterize the function of IL-10 in pulmonary PCM. METHODOLOGY/PRINCIPAL FINDINGS: Wild type (WT) and IL-10(-/-) C57BL/6 mice were used to characterize the role of IL-10 in the innate and adaptive immunity against Paracoccidioides brasiliensis (Pb) infection. We verified that Pb-infected peritoneal macrophages from IL-10(-/-) mice presented higher phagocytic and fungicidal activities than WT macrophages, and these activities were associated with elevated production of IFN-γ, TNF-α, nitric oxide (NO) and MCP-1. For in vivo studies, IL-10(-/-) and WT mice were i.t. infected with 1×10(6) Pb yeasts and studied at several post-infection periods. Compared to WT mice, IL-10(-/-) mice showed increased resistance to P. brasiliensis infection as determined by the progressive control of pulmonary fungal loads and total clearance of fungal cells from dissemination organs. This behavior was accompanied by enhanced delayed-type hypersensitivity reactions, precocious humoral immunity and controlled tissue pathology resulting in increased survival times. In addition, IL-10(-/-) mice developed precocious T cell immunity mediated by increased numbers of lung infiltrating effector/memory CD4(+) and CD8(+) T cells. The inflammatory reactions and the production of Th1/Th2/Th17 cytokines were reduced at late phases of infection, paralleling the regressive infection of IL-10(-/-) mice. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates for the first time that IL-10 plays a detrimental effect to pulmonary PCM due to its suppressive effect on the innate and adaptive immunity resulting in progressive infection and precocious mortality of infected hosts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophage interaction with oxidized low-density lipoprotein (oxLDL) leads to its differentiation into foam cells and cytokine production, contributing to atherosclerosis development. In a previous study, we showed that CD36 and the receptor for platelet-activating factor (PAFR) are required for oxLDL to activate gene transcription for cytokines and CD36. Here, we investigated the localization and physical interaction of CD36 and PAFR in macrophages stimulated with oxLDL. We found that blocking CD36 or PAFR decreases oxLDL uptake and IL-10 production. OxLDL induces IL-10 mRNA expression only in HEK293T expressing both receptors (PAFR and CD36). OxLDL does not induce IL-12 production. The lipid rafts disruption by treatment with βCD reduces the oxLDL uptake and IL-10 production. OxLDL induces co-immunoprecipitation of PAFR and CD36 with the constitutive raft protein flotillin-1, and colocalization with the lipid raft-marker GM1-ganglioside. Finally, we found colocalization of PAFR and CD36 in macrophages from human atherosclerotic plaques. Our results show that oxLDL induces the recruitment of PAFR and CD36 into the same lipid rafts, which is important for oxLDL uptake and IL-10 production. This study provided new insights into how oxLDL interact with macrophages and contributing to atherosclerosis development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on different aspects of immune regulation, both at the cellular and molecular levels. More specifically, this work concentrates on the importance of Interleukin-10, B and T Lymphocyte Attenuator (BTLA), and dendritic cells in respect to immune regulation, with special emphasis on autoimmunity. In this thesis, we show that the cellular source of IL10 production can dramatically influence the outcome of an autoimmune response. We show that T cell-derived IL10 plays an important role in controlling the viability of recently activated T cells, allowing them to become fully functional T effector cells. T cell-specific IL10-deficient mice failed to induce EAE when immunized with MOG peptide. Furthermore, when re-challenged with MOG or other stimuli, these T cells exhibited increased apoptosis rates. Here we report for the first time the generation of a novel mouse model that allows the conditional over-expression of BTLA. We show that BTLA can negatively regulate CD4+ T cells responses, when expressed by the T cells themselves. BTLA over-expression by CD8+ T cells or dendritic cells, however, resulted in enhanced viral clearance. In this study, we show that depletion of DCs, either early on from birth or later in adulthood, does not prevent EAE induction, but instead leads to a lower state of tolerance and stronger immune response. We also show that DCs are responsible for the upregulation of PD-1 on antigen-specific T cells and subsequently induce the formation of Tregs during immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunomodulation is a common feature of chronic helminth infections and mainly attributed to the secretion of bioactive molecules, which target and modify host immune cells. In this study, we show that the helminth immunomodulator AvCystatin, a cysteine protease inhibitor, induces a novel regulatory macrophage (Mreg; AvCystatin-Mreg), which is sufficient to mitigate major parameters of allergic airway inflammation and colitis in mice. A single adoptive transfer of AvCystatin-Mreg before allergen challenge suppressed allergen-specific IgE levels, the influx of eosinophils into the airways, local and systemic Th2 cytokine levels, and mucus production in lung bronchioles of mice, whereas increasing local and systemic IL-10 production by CD4(+) T cells. Moreover, a single administration of AvCystatin-Mreg during experimentally induced colitis strikingly reduced intestinal pathology. Phenotyping of AvCystatin-Mreg revealed increased expression of a distinct group of genes including LIGHT, sphingosine kinase 1, CCL1, arginase-1, and costimulatory molecules, CD16/32, ICAM-1, as well as PD-L1 and PD-L2. In cocultures with dendritic cells and CD4(+) T cells, AvCystatin-Mreg strongly induced the production of IL-10 in a cell-contact-independent manner. Collectively, our data identify a specific suppressive macrophage population induced by a single parasite immunomodulator, which protects against mucosal inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intestinal epithelium is anatomically positioned to serve as the critical interface between the lumen and the mucosal immune system. In addition to MHC class I and II antigens, intestinal epithelia constitutively express the nonclassical MHC molecule CD1d, a transmembrane molecule with a short cytoplasmic tail expressed as a β2-microglobulin-associated 48-kDa glycoprotein and novel β2-microglobulin-independent 37-kDa nonglycosylated protein on intestinal epithelia. At present, it is not known whether extracellular ligands can signal intestinal epithelial CD1d. To define signaling of CD1d cytoplasmic tail, retrovirus-mediated gene transfer was used to generate stable cell lines expressing wild-type CD1d or a chimeric molecule (extracellular CD1d and cytoplasmic CD1a), and surface CD1d was triggered by antibody crosslinking. Although wild-type CD1d was readily activated (tyrosine phosphorylation), no demonstrable signal was evident in cell lines expressing the chimeric molecule. Subsequent studies revealed that anti-CD1d crosslinking specifically induces epithelial IL-10 mRNA and protein and is blocked by the tyrosine kinase inhibitor genistein. Further studies addressing epithelial-derived IL-10 revealed that anti-CD1d crosslinking attenuates IFN-γ signaling and that such attenuation is reversed by addition of functionally inhibitory IL-10 antibodies. These results define signaling through surface CD1d, and, importantly, they demonstrate that this pathway may serve to dampen epithelial proinflammatory signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We identified a viral IL-10 homolog encoded by an ORF (UL111a) within the human cytomegalovirus (CMV) genome, which we designated cmvIL-10. cmvIL-10 can bind to the human IL-10 receptor and can compete with human IL-10 for binding sites, despite the fact that these two proteins are only 27% identical. cmvIL-10 requires both subunits of the IL-10 receptor complex to induce signal transduction events and biological activities. The structure of the cmvIL-10 gene is unique by itself. The gene retained two of four introns of the IL-10 gene, but the length of the introns was reduced. We demonstrated that cmvIL-10 is expressed in CMV-infected cells. Thus, expression of cmvIL-10 extends the range of counter measures developed by CMV to circumvent detection and destruction by the host immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparison of immune responses to infection by a pathogenic or a nonpathogenic immunodeficiency virus in macaques may provide insights into pathogenetic events leading to simian AIDS. This work is aimed at exploring cytokine expression during infection by simian immunodeficiency virus (SIV). We used semiquantitative reverse transcription-PCR to monitor interleukin (IL)-2/interferon (IFN)-gamma (Th1-like), and IL-4/IL-10 (Th2-like) expression in unmanipulated peripheral blood mononuclear cells (PBMCs), during the acute phase of infection of eight cynomolgus macaques (Macaca fascicularis) with a pathogenic primary isolate of SIVmac251 (full-length nef), and of four other cynomolgus macaques by an attenuated molecular clone of SIVmac251 (nef-truncated). All the monkeys became infected, as clearly shown by the presence of infected PBMCs and by seroconversion. Nevertheless, PBMC-associated virus loads and p27 antigenemia in monkeys infected by the attenuated virus clone remained lower than those observed in animals infected with the pathogenic SIVmac251 isolate. A rise of IL-10 mRNA expression occurred in both groups of monkeys coincident with the peak of viral replication. In monkeys infected with the pathogenic SIVmac251, IL-2, IL-4, and IFN-gamma mRNAs were either weakly detectable or undetectable. On the contrary, animals infected by the attenuated virus exhibited an overexpression of these cytokine mRNAs during the first weeks after inoculation. The lack of expression of these cytokines in monkeys infected with the pathogenic primary isolate may reflect early immunodeficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated whether the protection from graft-versus-host disease (GVHD) afforded by donor treatment with granulocyte colony-stimulating factor (G-CSF) could be enhanced by dose escalation. Donor treatment with human G-CSIF prevented GVHD in the B6 --> B6D2F1 murine model in a dose-dependent fashion, and murine G-CSF provided equivalent protection from GVHD at 10-fold lower doses. Donor pretreatment with a single dose of pegylated G-CSF (peg-G-CSF) prevented GVHD to a significantly greater extent than standard G-CSIF (survival, 75% versus 11%, P < .001). Donor T cells from peg-G-CSF-treated donors failed to proliferate to alloantigen and inhibited the responses of control T cells in an interleukin 10 (IL-10)-dependent-fashion in vitro. T cells from peg-GCSF-treated IL-10(-/-) donors induced lethal GVHD; T cells from peg-G-CSF-treated wild-type (wt) donors promoted long-term survival. Whereas T cells from peg-G-CSF wt donors were able to regulate GVHD induced by T cells from control-treated donors, T cells from G-CSF-treated wt donors and peg-G-CSF-treated IL-10(-/-) donors did not prevent mortality. Thus, peg-G-CSF is markedly superior to standard G-CSF for the prevention of GVHD following allogeneic stem cell transplantation (SCT), due to the generation of IL-10-producing regulatory T cells. These data support prospective clinical trials of peg-G-CSF-mobilized allogeneic blood SCT. (C) 2004 by The American Society of Hematology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initiation of graft-vs-host disease (GVHD) after stem cell transplantation is dependent on direct Ag presentation by host APCs, whereas the effect of donor APC populations is unclear. We studied the role of indirect Ag presentation in allogenic T cell responses by adding populations of cytokine-expanded donor APC to hemopoietic grafts that would otherwise induce lethal GVHD. Progenipoietin-1 (a synthetic G-CSF/Flt-3 ligand molecule) and G-CSF expanded myeloid dendritic cells (DC), plasmacytoid DC, and a novel granulocyte-monocyte precursor population (GM) that differentiate into class II+,CD80/CD86(+),CD40(-) APC during GVHD. Whereas addition of plasmacytoid and myeloid donor DC augmented GVHD, GM cells promoted transplant tolerance by MHC class II-restricted generation of IL-10-secreting, Ag-specific regulatory T cells. Importantly, although GM cells abrogated GVHD, graft-vs-leukemia effects were preserved. Thus, a population of cytokine-expanded GM precursors function as regulatory APCs, suggesting that G-CSF derivatives may have application in disorders characterized by a loss of self-tolerance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Host antigen-presenting cells (APCs) are known to be critical for the induction of graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation (BMT), but the relative contribution of specific APC subsets remains unclear. We have studied the role of host B cells in GVHD by using B-cell-deficient mu MT mice as BMT recipients in a model of CD4-dependent GVHD to major histocompatlibility complex antigens. We demonstrate that acute GVHD is initially augmented in mu MT recipients relative to wild-type recipients (mortality: 85% vs 44%, P < .01), and this is the result of an increase in donor T-cell proliferation, expansion, and inflammatory cytokine production early after BMT. Recipient B cells were depleted 28-fold at the time of BMT by total body irradiation (TBI) administered 24 hours earlier, and we demonstrate that TBI rapidly induces sustained interleukin-110 (IL-10) generation from B cells but not dendritic cells (DCs) or other cellular populations within the spleen. Finally, recipient mice in which B cells are unable to produce IL-10 due to homologous gene deletion develop more severe acute GVHD than recipient mice in which B cells are wild type. Thus, the induction of IL-10 in host B cells during conditioning attenuates experimental acute GVHD.