769 resultados para TCP(transmissioncontrolprotocol)
Resumo:
The majority of the traffic (bytes) flowing over the Internet today have been attributed to the Transmission Control Protocol (TCP). This strong presence of TCP has recently spurred further investigations into its congestion avoidance mechanism and its effect on the performance of short and long data transfers. At the same time, the rising interest in enhancing Internet services while keeping the implementation cost low has led to several service-differentiation proposals. In such service-differentiation architectures, much of the complexity is placed only in access routers, which classify and mark packets from different flows. Core routers can then allocate enough resources to each class of packets so as to satisfy delivery requirements, such as predictable (consistent) and fair service. In this paper, we investigate the interaction among short and long TCP flows, and how TCP service can be improved by employing a low-cost service-differentiation scheme. Through control-theoretic arguments and extensive simulations, we show the utility of isolating TCP flows into two classes based on their lifetime/size, namely one class of short flows and another of long flows. With such class-based isolation, short and long TCP flows have separate service queues at routers. This protects each class of flows from the other as they possess different characteristics, such as burstiness of arrivals/departures and congestion/sending window dynamics. We show the benefits of isolation, in terms of better predictability and fairness, over traditional shared queueing systems with both tail-drop and Random-Early-Drop (RED) packet dropping policies. The proposed class-based isolation of TCP flows has several advantages: (1) the implementation cost is low since it only requires core routers to maintain per-class (rather than per-flow) state; (2) it promises to be an effective traffic engineering tool for improved predictability and fairness for both short and long TCP flows; and (3) stringent delay requirements of short interactive transfers can be met by increasing the amount of resources allocated to the class of short flows.
Resumo:
This thesis presents a framework for aggregated congestion management for TCP flows and shows how to integrate such an approach in an existing TCP protocol stack. The thesis presents an initial implementation of this congestion management scheme in Linux, with performance evaluation in ns as well.
Resumo:
In this work, we conducted extensive active measurements on a large nationwide CDMA2000 1xRTT network in order to characterize the impact of both the Radio Link Protocol and more importantly, the wireless scheduler, on TCP. Our measurements include standard TCP/UDP logs, as well as detailed RF layer statistics that allow observability into RF dynamics. With the help of a robust correlation measure, normalized mutual information, we were able to quantify the impact of these two RF factors on TCP performance metrics such as the round trip time, packet loss rate, instantaneous throughput etc. We show that the variable channel rate has the larger impact on TCP behavior when compared to the Radio Link Protocol. Furthermore, we expose and rank the factors that influence the assigned channel rate itself and in particular, demonstrate the sensitivity of the wireless scheduler to the data sending rate. Thus, TCP is adapting its rate to match the available network capacity, while the rate allocated by the wireless scheduler is influenced by the sender's behavior. Such a system is best described as a closed loop system with two feedback controllers, the TCP controller and the wireless scheduler, each one affecting the other's decisions. In this work, we take the first steps in characterizing such a system in a realistic environment.
Resumo:
Modern cellular channels in 3G networks incorporate sophisticated power control and dynamic rate adaptation which can have significant impact on adaptive transport layer protocols, such as TCP. Though there exists studies that have evaluated the performance of TCP over such networks, they are based solely on observations at the transport layer and hence have no visibility into the impact of lower layer dynamics, which are a key characteristic of these networks. In this work, we present a detailed characterization of TCP behavior based on cross-layer measurement of transport layer, as well as RF and MAC layer parameters. In particular, through a series of active TCP/UDP experiments and measurement of the relevant variables at all three layers, we characterize both, the wireless scheduler and the radio link protocol in a commercial CDMA2000 network and assess their impact on TCP dynamics. Somewhat surprisingly, our findings indicate that the wireless scheduler is mostly insensitive to channel quality and sector load over short timescales and is mainly affected by the transport layer data rate. Furthermore, with the help of a robust correlation measure, Normalized Mutual Information, we were able to quantify the impact of the wireless scheduler and the radio link protocol on various TCP parameters such as the round trip time, throughput and packet loss rate.
Resumo:
Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
In IP networks, most of packets, that have been dropped, are recovered after the expiration of retransmission timeouts. These can result in unnecessary retransmissions and needless reduction of congestion window. An inappropriate retransmission timeout has a huge impact on TCP performance. In this paper we have proved that CSMA/CA mechanism can cause TCP retransmissions due to CSMA/CA effects. For this we have observed three wireless connections that use CSMA/CA: with good link quality, poor link quality and in presence of cross traffic. The measurements have been performed using real devices. Through tracking of each transmitted packet it is possible to analyze the relation between one-way delay and packet loss probability and the cumulative distribution of distances between peaks of OWDs. The distribution of OWDs and the distances between peaks of OWDs are the most important parameters of tuning TCP retransmission timeout on CSMA/CA networks. A new perspective through investigating the dynamical relation between one-way delay and packet loss ratio depending on the link quality to enhance the TCP performance has been provided.
Resumo:
TCP flows from applications such as the web or ftp are well supported by a Guaranteed Minimum Throughput Service (GMTS), which provides a minimum network throughput to the flow and, if possible, an extra throughput. We propose a scheme for a GMTS using Admission Control (AC) that is able to provide different minimum throughput to different users and that is suitable for "standard" TCP flows. Moreover, we consider a multidomain scenario where the scheme is used in one of the domains, and we propose some mechanisms for the interconnection with neighbor domains. The whole scheme uses a small set of packet classes in a core-stateless network where each class has a different discarding priority in queues assigned to it. The AC method involves only edge nodes and uses a special probing packet flow (marked as the highest discarding priority class) that is sent continuously from ingress to egress through a path. The available throughput in the path is obtained at the egress using measurements of flow aggregates, and then it is sent back to the ingress. At the ingress each flow is detected using an implicit way and then it is admission controlled. If it is accepted, it receives the GMTS and its packets are marked as the lowest discarding priority classes; otherwise, it receives a best-effort service. The scheme is evaluated through simulation in a simple "bottleneck" topology using different traffic loads consisting of "standard" TCP flows that carry files of varying sizes
Resumo:
En aquesta tesi proposem dos esquemes de xarxa amb control d'admissió per al trànsit elàstic TCP amb mecanismes senzills. Ambdós esquemes són capaços de proporcionar throughputs diferents i aïllament entre fluxos, on un "flux" es defineix com una seqüència de paquets relacionats dins d'una connexió TCP. Quant a l'arquitectura, ambdós fan servir classes de paquets amb diferents prioritats de descart, i un control d'admissió implícit, edge-to-edge i basat en mesures. En el primer esquema, les mesures són per flux, mentre que en el segon, les mesures són per agregat. El primer esquema aconsegueix un bon rendiment fent servir una modificació especial de les fonts TCP, mentre que el segon aconsegueix un bon rendiment amb fonts TCP estàndard. Ambdós esquemes han estat avaluats satisfactòriament a través de simulació en diferents topologies de xarxa i càrregues de trànsit.
Resumo:
Sterners Specialfabrik AB tillverkar bland annat mynt- och biljettautomater. För att underlätta felsökning, underhåll, avläsning av statistik med mera på en automat är det lämpligt att detta utförs på en PC över Internet. Det innebär att automaten inte behöver besökas då dessa uppgifter skall utföras. Examensarbetet går ut på att få en PIC mikrokontroller att kommunicera med en användare vid en PC över internet. För detta krävs att en TCP/IP stack implementeras på PICmikrokontrollern. Arbetet ledde till en fungerande demoapplikation som klarar av att kommunicera över TCP/IP. Demoapplikationen innehåller diverse olika funktioner för att demonstrera hur en automat skulle kunna styras och övervakas.