995 resultados para TATA box basal promoter element


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The psbA2 gene of a unicellular cyanobacterium, Microcystis aeruginosa K-81, encodes a D1 protein homolog in the reaction center of photosynthetic Photosystem II. The expression of the psbA2 transcript has been shown to be light-dependent as assessed under light and dark (12/12 h) cycling conditions. We aligned the 5′-untranslated leader regions (UTRs) of psbAs from different photosynthetic organisms and identified a conserved sequence, UAAAUAAA or the ‘AU-box’, just upstream of the SD sequences. To clarify the role of 5′-upstream cis-elements containing the AU-box for light-dependent expression of psbA2, a series of deletion and point mutations in the region were introduced into the genome of heterologous cyanobacterium Synechococcus sp. strain PCC 7942, and psbA2 expression was examined. A clear pattern of light-dependent expression was observed in recombinant cyanobacteria carrying the K-81 psbA2 –38/+36 region (which includes the minimal promoter element and a light-dependent cis-element with the AU-box), +1 indicating the transcription start site. A constitutive pattern of expression, in which the transcripts remained almost stable under dark conditions, was obtained in cells harboring the –38/+14 region (the minimal element), indicating that the +14/+36 region with the AU-box is important for the observed light-dependent expression. Point mutations analyses within the AU-box also revealed that changes in number, direction and identity (as assayed by adenine/uridine nucleotide substitutions) influenced the light-dependent pattern of expression. The level of psbA2 transcripts increased markedly in CG- or deletion-box mutants in the dark, strongly indicating that the AU- (AT-) box acts as a negative cis-element. Furthermore, characterization of transcript accumulation in cells treated with rifampicin suggests that psbA2 5′-mRNA is unstable in the dark, supporting the view that the light-dependent expression is controlled at the post-transcriptional level. We discuss various mechanisms that may lead to altered mRNA stability such as the binding of factor(s) or ribosomes to the 5′-UTR and possible roles of the AU-box motif and the SD sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GAL11 gene encodes an auxiliary transcription factor required for full expression of many genes in yeast. The GAL11-encoded protein (Gal11p) has recently been shown to copurify with the holoenzyme of RNA polymerase II. Here we report that Gal11p stimulates basal transcription in a reconstituted transcription system composed of recombinant or highly purified transcription factors, TFIIB, TFIIE, TFIIF, TFIIH, and TATA box-binding protein and core RNA polymerase II. We further demonstrate that each of the two domains of Gal11p essential for in vivo function respectively participates in the binding to the small and large subunits of TFIIE. The largest subunit of RNA polymerase II was coprecipitated by anti-hemagglutinin epitope antibody from crude extract of GAL11 wild type yeast expressing hemagglutinintagged small subunit of TFIIE. Such a coprecipitation of the RNA polymerase subunit was seen but in a greatly reduced amount, if extract was prepared from gal11 null yeast. In light of these findings, we suggest that Gal11p stimulates promoter activity by enhancing an association of TFIIE with the preinitiation complex in the cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most proteins that activate RNA polymerase II-mediated transcription in eukaryotic cells contain sequence-specific DNA-binding domains and "activation" regions. The latter bind general transcription factors and/or coactivators and are required for high-level transcription. Their function in vivo is unknown. Since several activation domains bind the TATA-binding protein (TBP), TBP-associated factors, or other general factors in vitro, one role of the activation domain may be to facilitate promoter occupancy by supporting cooperative binding of the activator and general transcription factors. Using the GAL4 system of yeast, we have tested this model in vivo. It is demonstrated that the presence of a TATA box (the TBP binding site) facilitates binding of GAL4 protein to low- and moderate-affinity sites and that the activation domain modulates these effects. These results support the cooperative binding model for activation domain function in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 243-amino acid adenovirus E1A oncoprotein both positively and negatively modulates the expression of cellular genes involved in the regulation of cell growth. The E1A transcription repression function appears to be linked with its ability to induce cellular DNA synthesis, cell proliferation, and cell transformation, as well as to inhibit cell differentiation. The mechanism by which E1A represses the transcription of various promoters has proven enigmatic. Here we provide several lines of evidence that the "TATA-box" binding protein (TBP) component of transcription factor TFIID is a cellular target of the E1A repression function encoded within the E1A N-terminal 80 amino acids. (i) The E1A N-terminal 80 amino acids [E1A-(1-80)protein] efficiently represses basal transcription from TATA-containing core promoters in vitro. (ii) TBP reverses completely E1A repression in vitro. (iii) TBP restores transcriptional activity to E1A-(1-80) protein affinity-depleted nuclear extracts. (iv) The N-terminal repression domain of E1A interacts directly and specifically with TBP in vitro. These results may help explain how E1A represses a set of genes that lack common upstream promoter elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The glucocorticoid-responsive units (GRUs) of the rat tyrosine aminotransferase were associated with the regulatory sequences of a cellular gene expressed ubiquitously--that coding for the largest subunit of RNA polymerase II. In transient expression assays, glucocorticoid responsiveness of the hybrid regulatory regions depends on the spatial relationship and number of regulatory elements. Two parameters affect the ratio of induction by glucocorticoids: the basal level of the hybrid promoter that is affected by the RNA polymerase II regulatory sequences and the glucocorticoid-induced level that depends on the distance between the GRUs and the TATA box. A fully active glucocorticoid-responsive hybrid gene was used to generate transgenic mice. Results show that a composite regulatory pattern is obtained: ubiquitous basal expression characteristic of the RNA polymerase II gene and liver-specific glucocorticoid activation characteristic of the tyrosine aminotransferase GRUs. This result demonstrates that the activity of the tyrosine aminotransferase GRUs is cell-type-specific not only in cultured cells but also in the whole animal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Archaea (archaebacteria) constitute a group of prokaryotes that are phylogenetically distinct from Eucarya (eukaryotes) and Bacteria (eubacteria). Although Archaea possess only one RNA polymerase, evidence suggests that their transcriptional apparatus is similar to that of Eucarya. For example, Archaea contain a homolog of the TATA-binding protein which interacts with the TATA-box like A-box sequence upstream of many archaeal genes. Here, we report the cloning of a Sulfolobus shibatae gene that encodes a protein (transcription factor TFB) with striking homology to the eukaryotic basal transcription factor TFIIB. We show by primer extension analysis that transcription of the S. shibatae TFB gene initiates 27 bp downstream from a consensus A-box element. Significantly, S. shibatae TFB contains an N-terminal putative metal-binding region and two imperfect direct repeats--structural features that are well conserved in eukaryotic TFIIBs. This suggests that TFB may perform analogous functions in Archaea and Eucarya. Consistent with this, we demonstrate that S. shibatae TFB promotes the binding of S. shibatae TBP to the A-box element of the Sulfolobus 16S/23S rRNA gene. Finally, we show that S. shibatae TFB is significantly more related to TFB of the archaeon Pyrococcus woesei than it is to eukaryotic TFIIBs. These data suggest that TFB arose in the common archaeal/eukaryotic ancestor and that the lineages leading to P. woesei and S. shibatae separated after the divergence of the archaeal and eukaryotic lines of descent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clusterina (CLU) è una proteina ubiquitaria, presente nella maggior parte dei fluidi corporei e implicata in svariati processi fisiologici. Dalla sua scoperta fino ad oggi, CLU è risultata essere una proteina enigmatica, la cui funzione non è ancora stata compresa appieno. Il gene codifica per 3 varianti trascrizionali identificate nel database NCBI con i codici: NM_001831 (CLU 1 in questo lavoro di tesi), NR_038335 (CLU 2 in questo lavoro di tesi) e NR_045494 (CLU 3 in questo lavoro di tesi). Tutte le varianti sono trascritte come pre-mRNA contenenti 9 esoni e 8 introni e si differenziano per l’esone 1, la cui sequenza è unica e caratteristica di ogni variante. Sebbene in NCBI sia annotato che le varianti CLU 2 e CLU 3 non sono codificanti, tramite analisi bioinformatica è stato predetto che da tutti e tre i trascritti possono generarsi proteine di differente lunghezza e localizzazione cellulare. Tra tutte le forme proteiche ipotizzate, l’unica a essere stata isolata e sequenziata è quella tradotta dall’AUG presente sull’esone 2 che dà origine a una proteina di 449 aminoacidi. Il processo di maturazione prevede la formazione di un precursore citoplasmatico (psCLU) che subisce modificazioni post-traduzionali tra cui formazione di ponti disolfuro, glicosilazioni, taglio in due catene denominate β e α prima di essere secreta come eterodimero βα (sCLU) nell’ambiente extracellulare, dove esercita la sua funzione di chaperone ATP-indipendente. Oltre alla forma extracellulare, è possibile osservare una forma intracellulare con localizzazione citosolica la cui funzione non è stata ancora completamente chiarita. Questo lavoro di tesi si è prefissato lo scopo di incrementare le conoscenze in merito ai trascritti CLU 1 e CLU 2 e alla loro regolazione, oltre ad approfondire il ruolo della forma citosolica della proteina in relazione al signaling di NF-kB che svolge un ruolo importante nel processo di sviluppo e metastatizzazione del tumore. Nella prima parte, uno screening di differenti linee cellulari, quali cellule epiteliali di prostata e di mammella, sia normali sia tumorali, fibroblasti di origine polmonare e linfociti di tumore non-Hodgkin, ha permesso di caratterizzare i trascritti CLU 1 e CLU 2. Dall’analisi è emerso che la sequenza di CLU 1 è più corta al 5’ rispetto a quella depositata in NCBI con l’identificativo NM_001831 e il primo AUG disponibile per l’inizio della traduzione è localizzato sull’esone 2. È stato dimostrato che CLU 2, al contrario di quanto riportato in NCBI, è tradotto in proteina a partire dall’AUG presente sull’esone 2, allo stesso modo in cui viene tradotto CLU 1. Inoltre, è stato osservato che i livelli d’espressione dei trascritti variano notevolmente tra le diverse linee cellulari e nelle cellule epiteliali CLU 2 è espressa sempre a bassi livelli. In queste cellule, l’espressione di CLU 2 è silenziata per via epigenetica e la somministrazione di farmaci capaci di rendere la cromatina più accessibile, quali tricostatina A e 5-aza-2’-deossicitidina, è in grado di incrementarne l’espressione. Nella seconda parte, un’analisi bioinformatica seguita da saggi di attività in vitro in cellule epiteliali prostatiche trattate con farmaci epigenetici, hanno permesso di identificare, per la prima volta in uomo, una seconda regione regolatrice denominata P2, capace di controllare l’espressione di CLU 2. Rispetto a P1, il classico promotore di CLU già ampiamente studiato da altri gruppi di ricerca, P2 è un promotore debole, privo di TATA box, che nelle cellule epiteliali prostatiche è silente in condizioni basali e la cui attività incrementa in seguito alla somministrazione di farmaci epigenetici capaci di alterare le modificazioni post-traduzionali delle code istoniche nell’intorno di P2. Ne consegue un rilassamento della cromatina e un successivo aumento di trascrizione di CLU 2. La presenza di un’isola CpG differentemente metilata nell’intorno di P1 spiegherebbe, almeno in parte, i differenti livelli di espressione di CLU che si osservano tra le diverse linee cellulari. Nella terza parte, l’analisi del pathway di NF-kB in un modello sperimentale di tumore prostatico in cui CLU è stata silenziata o sovraespressa, ha permesso di capire come la forma citosolica di CLU abbia un ruolo inibitorio nei confronti dell’attività del fattore trascrizionale NF-kB. CLU inibisce la fosforilazione e l’attivazione di p65, il membro più rappresentativo della famiglia NF-kB, con conseguente riduzione della trascrizione di alcuni geni da esso regolati e coinvolti nel rimodellamento della matrice extracellulare, quali l’urochinasi attivatrice del plasminogeno, la catepsina B e la metallo proteinasi 9. È stato dimostrato che tale inibizione non è dovuta a un’interazione fisica diretta tra CLU e p65, per cui si suppone che CLU interagisca con uno dei componenti più a monte della via di segnalazione responsabile della fosforilazione ed attivazione di p65.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian promoters can be separated into two classes, conserved TATA box-enriched promoters, which initiate at a welldefined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the sequence architecture and evolution of distinct promoter classes. Different tissues and families of genes differentially use distinct types of promoters. Our tagging methods allow quantitative analysis of promoter usage in different tissues and show that differentially regulated alternative TSSs are a common feature in protein-coding genes and commonly generate alternative N termini. Among the TSSs, we identified new start sites associated with the majority of exons and with 3' UTRs. These data permit genome-scale identification of tissue-specific promoters and analysis of the cis-acting elements associated with them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The base composition pattern (BCP) in the putative promoter region (PPRs) up to 5 Kb lengths of 682 human genes on Chromosome 22 (Chr22) was examined. Two-dimensional (2D) and three-dimensional (3D) functions were designed to delineate the DNA base composition, with four major patterns identified. It is found that 17.6% genes include TATA box, 28.0% GC box, 18.9% CAAT box and 38.4% CpG islands, and approximately 10% genes have one of four putative initiator (Inr) motifs. The occurrence of the promoter elements is tightly associated with the base composition features in the promoter regions, and the associations of the base composition features with occurrence of the promoter elements in the promoter regions mediate tissue-wide expression of the genes in human. The occurrence of two or more promoter elements in the promoter regions is required for the medium- and wide-range expression profiles of the human genes on Chr22. Thus, the reported data shed light on the characteristics of the PPRs of the human genes on Chr22, which may improve our understanding of regulatory roles of the PPRs with occurrence of the promoter elements in gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bent DNA sites promote the curvature of DNA in both eukaryotic and prokaryotic chromosomes. Here, we investigate the localization and structure of intrinsically bent DNA sites in the extensively characterized Drosophila melanogaster third chromosome DAFC-66D segment (Drosophila amplicon in the follicle cells). This region contains the amplification control element ACE3, which is a replication enhancer that acts in cis to activate the major replication origin ori-beta. Through both electrophoretic and in silico analysis, we have identified three major bent DNA sites in DAFC-66D. The bent DNA site (b1) is localized in the ACE3 element, whereas the other two bent DNA sites (b2 and b3) are localized in the ori-beta region. Four additional bent DNA sites were identified in the intron of the S18 gene and near the TATA box of the S15, S19, and S16 genes. The identification of DNA bent sites in genomic regions previously characterized as functionally relevant for DNA amplification further supports a function for DNA bent sites in DNA replication in eukaryotes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BTAF1 transcription factor interacts with TATA-binding protein (TBP) to form the B-TFIID complex, which is involved in RNA polymerase II transcription. Here, we present an extensive mapping study of TBP residues involved in BTAF1 interaction. This shows that residues in the concave, DNA-binding surface of TBP are important for BTAF1 binding. In addition, BTAF1 interacts with residues in helix 2 on the convex side of TBP as assayed in protein-protein and in DNA-binding assays. BTAF1 drastically changes the TATA-box binding specificity of TBP, as it is able to recruit DNA-binding defective TBP mutants to both TATA-containing and TATA-less DNA. Interestingly, other helix 2 interacting factors, such as TFIIA and NC2, can also stabilize mutant TBP binding to DNA. In contrast, TFIIB which interacts with a distinct surface of TBP does not display this activity. Since many proteins contact helix 2 of TBP, this provides a molecular basis for mutually exclusive TBP interactions and stresses the importance of this structural element for eukaryotic transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to characterize the gene encoding the ligand binding (1(st); alpha) chain of the human IFN-gamma receptor, two overlapping cosmid clones were analyzed. The gene spans over 25 kilobases (kb) of the genomic DNA and has seven exons. The extracellular domain is encoded by exons 1 to 5 and by part of exon 6. The transmembrane region is also encoded by exon 6. Exon 7 encodes the intracellular domain and the 3' untranslated portion. The gene was located on chromosome 6q23.1, as determined by in situ hybridization. The 4 kb region upstream (5') of the gene was sequenced and analyzed for promoter activity. No consensus-matching TATA or CAAT boxes in the 5' region were found. Potential binding sites for Sp1, AP-1, AP-2, and CREB nuclear factors were identified. Compatible with the presence of the Sp1/AP-2 sites and the lack of TATA box, S1-nuclease mapping experiments showed multiple transcription initiation sites. Promoter activity of the 5' flanking region was analyzed with two different reporter genes: the Escherichia coli chloramphenicol acetyltransferase and human growth hormone. The smallest 5' region of the gene that still had full promoter activity was 692 base pairs in length. In addition, we found sequences belonging to the oldest family of Alu repeats, 2 - 3 kb upstream of the gene, which could be useful for genetic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background To replicate, retroviruses must insert DNA copies of their RNA genomes into the host genome. This integration process is catalyzed by the viral integrase protein. The site of viral integration has been shown to be non-random and retrovirus-specific. LEDGF/p75, a splice variant encoded by PSIP1 gene and described as a general transcription coactivator, was identified as a tethering factor binding both to chromatin and to lentiviral integrases, thereby affecting integration efficiency as well as integration site selection. LEDGF/p75 is still a poorly characterized protein, and its cellular endogenous function has yet to be fully determined. In order to start unveiling the roles of LEDGF/p75 in the cell, we started to investigate the mechanisms involved in the regulation of LEDGF/p75. Materials and methods To identify PSIP1 minimal promoter and associated regulatory elements, we cloned a region starting 5 kb upstream the transcription start site (TSS, +1 reference position) to the ATG start codon (+816), as well as systematic truncations, in a plasmid containing the firefly luciferase reporter gene. These constructs were co-transfected into HEK293 cells with a plasmid encoding the Renilla luciferase under the pTK promoter as an internal control for transfection efficiency. Both luciferase activities were assessed by luminescence as an indicator of promoter activity. Results Luciferase assays identified regions -76 to +1 and +1 to +94 as two independent minimal promoters showing respectively a 3.7x and 2.3x increase in luciferase activity. These two independent minimal promoters worked synergistically increasing luciferase activity up to 16.3x as compared to background. Moreover, we identified five regulatory blocks which modulated luciferase activity depending on the DNA region tested, three enhancers (- 2007 to -1159, -284 to -171 and +94 to +644) and two silencers (-171 to -76 and +796 to +816). However, the silencing effect of the region -171 to -76 is dependent on the presence of the +94 to +644 region, ruling out the enhancer activity of the latter. Computational analysis of PSIP1 promoter revealed the absence of TATA box and initiator (INR) sequences, classifying this promoter as nonconventional. TATA-less and INR-less promoters are characterized by multiple Sp1 binding sites, involved in the recruitment of the RNA pol II complex. Consistent with this, PSIP1 promoter contains multiple putative Sp1 binding sequences in regions -76 to +1 and +1 to +94.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : Transcriptional regulation is the result of a combination of positive and negative effectors, such as transcription factors, cofactors and chromatin modifiers. During my thesis project I studied chromatin association, and transcriptional and cell cycle regulatory functions of dHCF, the Drosophila homologue of the human protein HCF-1 (host cell factor-1). The human and Drosophila HCF proteins are synthesized as large polypeptides that are cleaved into two subunits (HCFN and HCFC), which remain associated with one another by non covalent interactions. Studies in mammalian cells over the past 20 years have been devoted to understanding the cellular functions of HCF-1 and have revealed that it is a key regulator of transcription and cell cycle regulation. In human cells, HCF-1 interacts with the histone methyltransferase Set1/Ash2 and MLL/Ash2 complexes and the histone deacetylase Sin3 complex, which are involved in transcriptional activation and repression, respectively. HCF-1 is also recruited to promoters to regulate G1 -to-S phase progression during the cell cycle by the activator transcription factors E2F1 and E2F3, and by the repressor transcription factor E2F4. HCF-1 protein structure and these interactions between HCP-1 and E2F transcriptional regulator proteins are also conserved in Drosophila. In this doctoral thesis, I use proliferating Drosophila SL2 cells to study both the genomic-binding sites of dHCF, using a combination of chromatin immunoprecipitation and ultra high throughput sequencing (ChIP-seq) analysis, and dHCF regulated genes, employing RNAi and microarray expression analysis. I show that dHCF is bound to over 7500 chromosomal sites in proliferating SL2 cells, and is located at +-200 bp relative to the transcriptional start sites of about 30% of Drosophila genes. There is also a direct relationship between dHCF promoter association and promoter- associated transcriptional activity. Thus, dHCF binding levels at promoters correlated directly with transcriptional activity. In contrast, expression studies showed that dHCF appears to be involved in both transcriptional activation and repression. Analysis of dHCF-binding sites identified nine dHCF-associated motifs, four of them linked dHCF to (i) two insulator proteins, GAGA and BEAF, (ii) the E-box motif, and (iii) a degenerated TATA-box. The dHCF-associated motifs allowed the organization of the dHCF-bound genes into five biological processes: differentiation, cell cycle and gene expression, regulation of endocytosis, and cellular localization. I further show that different mechanisms regulate dHCF association with chromatin. Despite that after dHCF cleavage the dHCFN and dHCFC subunits remain associated, the two subunits showed different affinities for chromatin and differential binding to a set of tested promoters, suggesting that dHCF could target specific promoters through each of the two subunits. Moreover, in addition to the interaction between dHCF and E2F transcription factors, the dHCF binding pattern is correlated with dE2F2 genomic 4 distribution. I show that dE2F factors are necessary for recruitment of dHCF to the promoter of a set of dHCF regulated genes. Therefore dHCF, as in mammals, is involved in regulation of G1 to S phase progression in collaboration with the dE2Fs transcription factors. In addition, gene expression arrays reveal that dHCF could indirectly regulate cell cycle progression by promoting expression of genes involved in gene expression and protein synthesis, and inhibiting expression of genes involved in cell-cell adhesion. Therefore, dHCF is an evolutionary conserved protein, which binds to many specific sites of the Drosophila genome via interaction with DNA of chromatin-binding proteins to regulate the expression of genes involved in many different cellular functions. Résumé : La regulation de la transcription est le résultat des effets positifs et négatifs des facteurs de transcription, cofacteurs et protéines effectrices qui modifient la chromatine. Pendant mon projet de thèse, j'ai étudié l'association a la chromatine, ainsi que la régulation de la transcription et du cycle cellulaire par dHCF, l'homologue chez la drosophile de la protéine humaine HCF-1 (host cell factor-1). Chez 1'humain et la V drosophile, les deux protéines HCF sont synthétisées sous la forme d'un long polypeptide, qui est ensuite coupé en deux sous-unités au centre de la protéine. Les deux sous-unités restent associées ensemble grâce a des interactions non-covalentes. Des études réalisées pendant les 20 dernières années ont permit d'établir que HCF-l et un facteur clé dans la régulation de la transcription et du cycle cellulaire. Dans les cellules humaines, HCF-1 active et réprime la transcription en interagissant avec des complexes de protéines qui activent la transcription en méthylant les histones (HMT), comme par Set1/Ash2 et MLL/Ash2, et d'autres complexes qui répriment la transcription et sont responsables de la déacétylation des histones (HDAC) comme la protéine Sin3. HCF-l est aussi recruté aux promoteurs par les activateurs de la transcription E2F l et E2F3a, et par le répresseur de la transcription E2F4 pour réguler la transition entre les phases G1 et S du cycle cellulaire. La structure de HCF-1 et les interactions entre HCF-l et les régulateurs de la transcription sont conservées chez la drosophile. Pendant ma these j'ai utilisé les cellules de la drosophile, SL2 en culture, pour étudier les endroits de liaisons de HCF-l à la chromatine, grâce a immunoprecipitation de la chromatine et du séquençage de l'ADN massif ainsi que les gènes régulés par dHCF 3 grâce a la technique de RNAi et des microarrays. Mes résultats on montré que dHCF se lie à environ 7565 endroits, et estimé a 1200 paire de bases autour des sites d'initiation de la transcription de 30% des gènes de la drosophile. J 'ai observe une relation entre dHCF et le niveau de la transcription. En effet, le niveau de liaison dHCF au promoteur corrèle avec l'activité de la transcription. Cependant, mes études d'expression ont montré que dHCF est implique dans le processus d'activation et mais aussi de répression de la transcription. L'analyse des séquences d'ADN liées par dHCF a révèle neuf motifs, quatre de ces motifs ont permis d'associer dl-ICF a deux protéines isolatrices GAGA et BEAF, au motif pour les E-boxes et a une TATA-box dégénérée. Les neuf motifs associes à dHCF ont permis d'associer les gènes lies par dHCF au promoteur a cinq processus biologiques: différentiation, cycle cellulaire, expression de gènes, régulation de l'endocytosis et la localisation cellulaire, J 'ai aussi montré qu'il y a plusieurs mécanismes qui régulent l'association de dHCF a la chromatine, malgré qu'après clivage, les deux sous-unites dHCFN and dHCFC, restent associées, elles montrent différentes affinités pour la chromatine et lient différemment un group de promoteurs, les résultats suggèrent que dHCF peut se lier aux promoteurs en utilisant chacune de ses sous-unitées. En plus de l'association de dHCF avec les facteurs de transcription dE2F s, la distribution de dHCF sur le génome corrèle avec celle du facteur de transcription dE2F2. J'ai aussi montré que les dE2Fs sont nécessaires pour le recrutement de dHCF aux promoteurs d'un sous-groupe de gènes régules par dHCF. Mes résultats ont aussi montré que chez la drosophile comme chez les humains, dl-ICF est implique dans la régulation de la progression de la phase G1 a la phase S du cycle cellulaire en collaboration avec dE2Fs. D'ailleurs, les arrays d'expression ont suggéré que dHCF pourrait réguler le cycle cellulaire de façon indirecte en activant l'expression de gènes impliqués dans l'expression génique et la synthèse de protéines, et en inhibant l'expression de gènes impliqués dans l'adhésion cellulaire. En conclusion, dHCF est une protéine, conservée dans l'évolution, qui se lie spécifiquement a beaucoup d'endroits du génome de Drosophile, grâce à l'interaction avec d'autres protéines, pour réguler l'expression des gènes impliqués dans plusieurs fonctions cellulaires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.