994 resultados para Synthetic biomaterial templates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Railway bridges deteriorate with age. Factors such as environmental effects on different materials of a bridge, variation of loads, fatigue, etc will reduce the remaining life of bridges. Bridges are currently rated individually for maintenance and repair actions according to the structural conditions of their elements. Dealing with thousands of bridges and several factors that cause deterioration, makes the rating process extremely complicated. Current simplified but practical rating methods are not based on an accurate structural condition assessment system. On the other hand, the sophisticated but more accurate methods are only used for a single bridge or particular types of bridges. It is therefore necessary to develop a practical and accurate system which will be capable of rating a network of railway bridges. This paper introduces a new method for rating a network of bridges based on their current and future structural conditions. The method identifies typical bridges representing a group of railway bridges. The most crucial agents will be determined and categorized to criticality and vulnerability factors. Classification based on structural configuration, loading, and critical deterioration factors will be conducted. Finally a rating method for a network of railway bridges that takes into account the effects of damaged structural components due to variations in loading and environmental conditions on the integrity of the whole structure will be proposed. The outcome of this research is expected to significantly improve the rating methods for railway bridges by considering the unique characteristics of different factors and incorporating the correlation between them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Railway bridges deteriorate with age. Factors such as environmental effects on different materials of a bridge, variation of loads, fatigue, etc. will reduce the remaining life of bridges. Dealing with thousands of bridges and several factors that cause deterioration, makes the rating process extremely complicated. Current simplified but practical methods of rating a network of bridges are not based on an accurate structural condition assessment system. On the other hand, the sophisticated but more accurate methods are only used for a single bridge or particular types of bridges. It is therefore necessary to develop a practical and accurate system, which will be capable of rating a network of railway bridges. This article introduces a new method to rate a network of bridges based on their current and future structural conditions. The method identifies typical bridges representing a group of railway bridges. The most crucial agents will be determined and categorized to criticality and vulnerability factors. Classification based on structural configuration, loading, and critical deterioration factors will be conducted. Finally a rating method for a network of railway bridges that takes into account the effects of damaged structural components due to variations in loading and environmental conditions on the integrity of the whole structure will be proposed. The outcome of this article is expected to significantly improve the rating methods for railway bridges by considering the unique characteristics of different factors and incorporating the correlation among them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used Magnetic Resonance microimaging (μMRI) to study the compressive behaviour of synthetic elastin. Compression-induced changes in the elastin sample were quantified using longitudinal and transverse spin relaxation rates (R1 and R2, respectively). Spatially-resolved maps of each spin relaxation rate were obtained, allowing the heterogeneous texture of the sample to be observed with and without compression. Compression resulted in an increase of both the mean R1 and the mean R2, but most of this increase was due to sub-locations that exhibited relatively low R1 and R2 in the uncompressed state. This behaviour can be described by differential compression, where local domains in the hydrogel with a relatively low biopolymer content compress more than those with a relatively high biopolymer content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synthetic reevesite-like material has been shown to decolorize selected dyes and degrade phenolic contaminants photocatalytically in water when irradiated with visible light. This material can photoactively decolorize dyes such as bromophenol blue, bromocresol green, bromothymol blue, thymol blue and methyl orange in less than 15 min under visible light radiation in the absence of additional oxidizing agents. Conversely, phenolic compounds suc has phenol, p-chlorophenol and p-nitrophenol are photocat- alytically degraded in approximately 3hwith additional H2O2 when irradiated with visible light. These reactions offer potentially energy effective pathways for the removal of recalcitrant organic waste contaminants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successive alkalinity producing systems (SAPSs) are widely used for treating acid mine drainage (AMD) and alleviating clogging commonly occurring in limestone systems due to an amorphous ferric precipitate. In this study, iron dust, bone char, micrite and their admixtures were used to treat arseniccontaining AMD. A particular interest was devoted to arsenic removal performance, mineralogical constraints on arsenic retention ability and permeability variation during column experiment for 140 days. The results showed that the sequence of the arsenic removal capacity was as follows: bone char > micrite > iron dust. The combination of 20% v/v iron dust and 80% v/v bone char/micrite columns can achieve better hydraulic conductivity and phosphorus-retention capacity than single micrite and bone char columns. The addition of iron dust created reductive environment and resulted in the transformation of coating material from colloidal phase to secondary mineral phase, such as green rust and phosphoerrite, which obviously ameliorates hydraulic conductivity of systems. The sequential extraction experiments indicated that the stable fractions of arsenic in columns were enhanced with help of iron dust compared to single bone char and micrite columns. A combination of iron dust and micrite/bone char represented a potential SAPS for treating As-containing AMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is aimed at further understanding the uppermost lipid-filled membranous layer (i.e. surface amorphous layer (SAL)) of articular cartilage and to develop a scientific framework for re-introducing lipids onto the surface of lipid-depleted articular cartilage (i.e. "resurfacing"). The outcome will potentially contribute to knowledge that will facilitate the repair of the articular surface of cartilage where degradation is limited to the loss of the lipids of the SAL only. The surface amorphous layer is of utmost importance to the effective load-spreading, lubrication, and semipermeability (which controls its fluid management, nutrient transport and waste removal) of articular cartilage in the mammalian joints. However, because this uppermost layer of cartilage is often in contact during physiological function, it is prone to wear and tear, and thus, is the site for damage initiation that can lead to the early stages of joint condition like osteoarthritis, and related conditions that cause pain and discomfort leading to low quality of life in patients. It is therefore imperative to conduct a study which offers insight into remedying this problem. It is hypothesized that restoration (resurfacing) of the surface amorphous layer can be achieved by re-introducing synthetic surface-active phospholipids (SAPL) into the joint space. This hypothesis was tested in this thesis by exposing cartilage samples whose surface lipids had been depleted to individual and mixtures of synthetic saturated and unsaturated phospholipids. The surfaces of normal, delipidized, and relipidized samples of cartilage were characterized for their structural integrity and functionality using atomic force microscope (AFM), confocal microscope (COFM), Raman spectroscopy, magnetic resonance imaging (MRI) with image processing in the MATLAB® environment and mechanical loading experiments. The results from AFM imaging, confocal microscopy, and Raman spectroscopy revealed a successful deposition of new surface layer on delipidized cartilage when incubated in synthetic phospholipids. The relipidization resulted in a significant improvement in the surface nanostructure of the artificially degraded cartilage, with the complete SAPL mixture providing better outcomes in comparison to those created with the single SAPL components (palmitoyl-oleoyl-phosphatidylcholine, POPC and dipalmitoyl-phosphatidylcholine, DPPC). MRI analysis revealed that the surface created with the complete mixture of synthetic lipids was capable of providing semipermeability to the surface layer of the treated cartilage samples relative to the normal intact surface. Furthermore, deformation energy analysis revealed that the treated samples were capable of delivering the elastic properties required for load bearing and recovery of the tissue relative to the normal intact samples, with this capability closer between the normal and the samples incubated in the complete lipid mixture. In conclusion, this thesis has established that it is possible to deposit/create a potentially viable layer on the surface of cartilage following degradation/lipid loss through incubation in synthetic lipid solutions. However, further studies will be required to advance the ideas developed in this thesis, for the development of synthetic lipid-based injections/drugs for treatment of osteoarthritis and other related joint conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a rapidly growing appreciation of the important physiological roles played by kallikreins and kallikrein-related peptidases (KLKs). Recent studies have revealed that these enzymes control key events in processes as diverse as inflammation and skin desquamation. Accordingly, there is considerable interest in developing tools to further dissect kallikrein activity, and a burgeoning effort aimed at producing lead inhibitors for therapeutic development. Indeed, several candidate inhibitors are already in clinical trials. This chapter surveys the naturally occurring kallikrein inhibitors, together with strategies for employing these molecules as bioscaffolds, as well as current progress in the development of small-molecule kallikrein inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Injured bone initiates the healing process by forming a blood clot at the damaged site. However, in severe damage, synthetic bone implants are used to provide structural integrity and restore the healing process. The implant unavoidably comes into direct contact with whole blood, leading to a blood clot formation on its surface. Despite this, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Surface chemistry of a biomaterial is a crucial property in mediating blood-biomaterials interactions, and hence the formation of the resultant blood clot. Surfaces presenting mixtures of functional groups carboxyl (–COOH) and methyl (–CH3) have been shown to enhance platelet response and coagulation activation, leading to the formation of fibrin fibres. In addition, it has been shown that varying the compositions of these functional groups and the length of alkyl groups further modulate the immune complement response. In this study, we hypothesised that a biomaterial surface with mixture of –COOH/–CH3(methyl), –CH2CH3 (ethyl) or –(CH2)3CH3 (butyl) groups at different ratios would modulate blood coagulation and complement activation, and eventually tailor the structural and functional properties of the blood clot formed on the surface, which subsequently impacts new bone formation. Firstly, we synthesised a series of materials composed of acrylic acid (AA), and methyl (MMA), ethyl (EMA) or butyl methacrylates (BMA) at different ratios and coated on the inner surfaces of incubation vials. Our surface analysis showed that the amount of –COOH groups on the surface coatings was lower than the ratios of AA prepared in the materials even though the surface content of –COOH groups increased with increasing in AA ratios. It was indicated that the surface hydrophobicity increased with increasing alkyl chain length: –CH 3 > –CH2CH3 > –(CH2)3CH3, and decreased with increasing –COOH groups. No significant differences in surface hydrophobicity was found on surfaces with –CH3 and –CH2CH3 groups in the presence of –COOH groups. The material coating was as smooth as uncoated glass and without any major flaws. The average roughness of material-coated surface (3.99 ± 0.54 nm) was slightly higher than that of uncoated glass surface (2.22 ± 0.29 nm). However, no significant differences in surface average roughness was found among surfaces with the same functionalities at different –COOH ratios nor among surfaces with different alkyl groups but the same –COOH ratios. These suggested that the surface functional groups and their compositions had a combined effect on modulating surface hydrophobicity but not surface roughness. The second part of our study was to investigate the effect of surface functional groups and their compositions on blood cascade activation and structural properties of the formed clots. It was found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/–CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of activation. Moreover, all material-coated surfaces markedly reduced the complement activation compared to uncoated glass surfaces, and the pattern of complement activation was entirely similar to that of surface-induced coagulation, suggesting there is an interaction between two cascades. The clots formed on material-coated surfaces had thicker fibrin with a tighter network at the exterior when compared to uncoated glass surfaces. Compared to the clot exteriors, thicker fibrins with a loose network were found in clot interiors. Coated surfaces resulted in more rigid clots with a significantly slower fibrinolysis after 1 h of lysis when compared to uncoated glass surfaces. Significant differences in fibrinolysis after 1 h of lysis among clots on material-coated surfaces correlated well with the differences in fibrin thickness and density at clot exterior. In addition, more growth factors were released during clot formation than during clot lysis. From an intact clot, there was a correlation between the amount of PDGF-AB release and fibrin density. Highest amount of PDGF-AB was released from clots formed on surfaces with 40% –COOH/60% –CH 3 (i.e. 65MMA). During clot lysis, the release of PDGF-AB also correlated with the fibrinolytic rate while the release of TGF-â1 was influenced by the fibrin thickness. This suggested that different clot structures led to different release profiles of growth factors in clot intact and degrading stages. We further validated whether the clots formed on material-coatings provide the microenvironment for improved bone healing by using a rabbit femoral defect model. In this pilot study, the implantation of clots formed on 65MMA coatings significantly increased new bone formation with enhanced chondrogenesis, osteoblasts activity and vascularisation, but decreased inflammatory macrophage number at the defects after 4 weeks when compared to commercial bone grafts ChronOSTM â-TCP granules. Empty defects were observed when blood clot formation was inhibited. In summary, our study demonstrated that surface functional groups and their relative ratios on material coatings synergistically modulate activation of blood cascades, resultant fibrin architecture, rigidity, susceptibility to fibrinolysis as well as growth factor release of the formed clots, which ultimately alter the healing microenvironment of injured bones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rice ragged stunt virus (RRSV) is an important pathogen of rice affecting its cultivation in South and South East Asia. An approach based on pathogen derived resistance (PDR) was used to produce RRSV resistant rice cultivars. Sequences from the coding region of RRSV genome segments 7 and 10 (non-structural genes), and 5, 8 and 9 (structural genes) were placed in sense or antisense orientation behind the plant expression promoters CaMV35S, RolC, Ubil, Actl and RBTV. Rice cultivars Taipei 309 and Chinsurah Boro II were transformed by biolistic and/or Agrobacterium-mediated delivery of one or more of these PDR gene constructs. A large number of transgenic lines were produced from calli derived from mature or immature embryos, co-bombarded with the marker gene hph encoding hygromycin resistance and RRSV PDR genes or co-cultivated with strains having the binary vector containing these two genes. Both Mendelian and non-Mendelian segregations were observed in transgenic progeny, especially with transgenic lines produced by biolistics. Preliminary tests conducted in China on selected transgenic lines indicate that plants with RRSV segment 5 antisense PDR gene confer RRSV resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hard-to-heal leg ulcers are a major cause of morbidity in the elderly population. Despite improvements in wound care, some wounds will not heal and they present a significant challenge for patients and health care providers. A multi-centre cohort study was conducted to evaluate the effectiveness and safety of a synthetic, extracellular matrix protein as an adjunct to standard care in the treatment of hard-to-heal venous or mixed leg ulcers. Primary effectiveness criteria were (i) reduction in wound size evaluated by percentage change in wound area and (ii) healing assessed by number of patients healed by end of the 12 week study. Pain reduction was assessed as a secondary effectiveness criteria using VAS. A total of 45 patients completed the study and no difference was observed between cohorts for treatment frequency. Healing was achieved in 35·6% and wound size decreased in 93·3% of patients. Median wound area percentage reduction was 70·8%. Over 50% of patients reported pain on first visit and 87·0% of these reported no pain at the end of the study. Median time to first reporting of no pain was 14 days after treatment initiation. The authors consider the extracellular synthetic matrix protein an effective and safe adjunct to standard care in the treatment of hard-to-heal leg ulcers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rigid lenses, which were originally made from glass (between 1888 and 1940) and later from polymethyl methacrylate or silicone acrylate materials, are uncomfortable to wear and are now seldom fitted to new patients. Contact lenses became a popular mode of ophthalmic refractive error correction following the discovery of the first hydrogel material – hydroxyethyl methacrylate – by Czech chemist Otto Wichterle in 1960. To satisfy the requirements for ocular biocompatibility, contact lenses must be transparent and optically stable (for clear vision), have a low elastic modulus (for good comfort), have a hydrophilic surface (for good wettability), and be permeable to certain metabolites, especially oxygen, to allow for normal corneal metabolism and respiration during lens wear. A major breakthrough in respect of the last of these requirements was the development of silicone hydrogel soft lenses in 1999 and techniques for making the surface hydrophilic. The vast majority of contact lenses distributed worldwide are mass-produced using cast molding, although spin casting is also used. These advanced mass-production techniques have facilitated the frequent disposal of contact lenses, leading to improvements in ocular health and fewer complications. More than one-third of all soft contact lenses sold today are designed to be discarded daily (i.e., ‘daily disposable’ lenses).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important parts of any Bridge Management System (BMS) is the condition assessment and rating of bridges. This paper, introduces a procedure for condition assessment, based on criticality and vulnerability analysis. According to this procedure, new rating equations are developed. The inventory data is used to determine the contribution of different critical factors such as environmental effects, flood, earthquake, wind, and vehicle impacts. The criticality of the components to live load and vulnerability of the components to the above critical factors are identified. Based on the criticality and the vulnerability of the components and criticality of factors, and by using the new rating equations, the condition assessment and the rating of the railway bridges and their components at the network level will be conducted. This method for the first time incorporates structural analysis, available knowledge of risk assessment in structural engineering standards, and the experience of structural engineers in a practical way to enhance the reliability of the condition assessment and rating a network of bridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust facial expression recognition (FER) under occluded face conditions is challenging. It requires robust algorithms of feature extraction and investigations into the effects of different types of occlusion on the recognition performance to gain insight. Previous FER studies in this area have been limited. They have spanned recovery strategies for loss of local texture information and testing limited to only a few types of occlusion and predominantly a matched train-test strategy. This paper proposes a robust approach that employs a Monte Carlo algorithm to extract a set of Gabor based part-face templates from gallery images and converts these templates into template match distance features. The resulting feature vectors are robust to occlusion because occluded parts are covered by some but not all of the random templates. The method is evaluated using facial images with occluded regions around the eyes and the mouth, randomly placed occlusion patches of different sizes, and near-realistic occlusion of eyes with clear and solid glasses. Both matched and mis-matched train and test strategies are adopted to analyze the effects of such occlusion. Overall recognition performance and the performance for each facial expression are investigated. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the high robustness and fast processing speed of our approach, and provide useful insight into the effects of occlusion on FER. The results on the parameter sensitivity demonstrate a certain level of robustness of the approach to changes in the orientation and scale of Gabor filters, the size of templates, and occlusions ratios. Performance comparisons with previous approaches show that the proposed method is more robust to occlusion with lower reductions in accuracy from occlusion of eyes or mouth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the use of the hydrogen bond acceptor properties of some phosphorus-containing functional groups for the assembly of a series of [2]rotaxanes. Phosphinamides, and the homologous thio– and selenophosphinamides, act as hydrogen bond acceptors that, in conjunction with an appropriately positioned amide group on the thread, direct the assembly of amide-based macrocycles around the axle to form rotaxanes in up to 60% yields. Employing solely phosphorus-based functional groups as the hydrogen bond accepting groups on the thread, a bis(phosphinamide) template and a phosphine oxide-phosphinamide template afforded the corresponding rotaxanes in 18 and 15 % yields, respectively. X-Ray crystallography of the rotaxanes shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and various hydrogen bond accepting groups on the thread, including rare examples of amide-to-phosphonamide, -thiophosphinamide and -selenophosphinamide groups. With a phosphine oxide-phosphinamide thread, the solid state structure of the rotaxane is remarkable, featuring no direct intercomponent hydrogen bonds but rather a hydrogen bond network involving water molecules that bridge the H-bonding groups of the macrocycle and thread through bifurcated hydrogen bonds. The incorporation of phosphorus-based functional groups into rotaxanes may prove useful for the development of molecular shuttles in which the macrocycle can be used to hinder or expose binding ligating sites for metal-based catalysts.