906 resultados para Synchronous hidden Markov models
Resumo:
Context awareness, dynamic reconfiguration at runtime and heterogeneity are key characteristics of future distributed systems, particularly in ubiquitous and mobile computing scenarios. The main contributions of this dissertation are theoretical as well as architectural concepts facilitating information exchange and fusion in heterogeneous and dynamic distributed environments. Our main focus is on bridging the heterogeneity issues and, at the same time, considering uncertain, imprecise and unreliable sensor information in information fusion and reasoning approaches. A domain ontology is used to establish a common vocabulary for the exchanged information. We thereby explicitly support different representations for the same kind of information and provide Inter-Representation Operations that convert between them. Special account is taken of the conversion of associated meta-data that express uncertainty and impreciseness. The Unscented Transformation, for example, is applied to propagate Gaussian normal distributions across highly non-linear Inter-Representation Operations. Uncertain sensor information is fused using the Dempster-Shafer Theory of Evidence as it allows explicit modelling of partial and complete ignorance. We also show how to incorporate the Dempster-Shafer Theory of Evidence into probabilistic reasoning schemes such as Hidden Markov Models in order to be able to consider the uncertainty of sensor information when deriving high-level information from low-level data. For all these concepts we provide architectural support as a guideline for developers of innovative information exchange and fusion infrastructures that are particularly targeted at heterogeneous dynamic environments. Two case studies serve as proof of concept. The first case study focuses on heterogeneous autonomous robots that have to spontaneously form a cooperative team in order to achieve a common goal. The second case study is concerned with an approach for user activity recognition which serves as baseline for a context-aware adaptive application. Both case studies demonstrate the viability and strengths of the proposed solution and emphasize that the Dempster-Shafer Theory of Evidence should be preferred to pure probability theory in applications involving non-linear Inter-Representation Operations.
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.
Resumo:
We consider an online learning scenario in which the learner can make predictions on the basis of a fixed set of experts. The performance of each expert may change over time in a manner unknown to the learner. We formulate a class of universal learning algorithms for this problem by expressing them as simple Bayesian algorithms operating on models analogous to Hidden Markov Models (HMMs). We derive a new performance bound for such algorithms which is considerably simpler than existing bounds. The bound provides the basis for learning the rate at which the identity of the optimal expert switches over time. We find an analytic expression for the a priori resolution at which we need to learn the rate parameter. We extend our scalar switching-rate result to models of the switching-rate that are governed by a matrix of parameters, i.e. arbitrary homogeneous HMMs. We apply and examine our algorithm in the context of the problem of energy management in wireless networks. We analyze the new results in the framework of Information Theory.
Resumo:
Background Plasmodium vivax continues to be the most widely distributed malarial parasite species in tropical and sub-tropical areas, causing high morbidity indices around the world. Better understanding of the proteins used by the parasite during the invasion of red blood cells is required to obtain an effective vaccine against this disease. This study describes characterizing the P. vivax asparagine-rich protein (PvARP) and examines its antigenicity in natural infection. Methods The target gene in the study was selected according to a previous in silico analysis using profile hidden Markov models which identified P. vivax proteins that play a possible role in invasion. Transcription of the arp gene in the P. vivax VCG-1 strain was here evaluated by RT-PCR. Specific human antibodies against PvARP were used to confirm protein expression by Western blot as well as its subcellular localization by immunofluorescence. Recognition of recombinant PvARP by sera from P. vivax-infected individuals was evaluated by ELISA. Results VCG-1 strain PvARP is a 281-residue-long molecule, which is encoded by a single exon and has an N-terminal secretion signal, as well as a tandem repeat region. This protein is expressed in mature schizonts and is located on the surface of merozoites, having an apparent accumulation towards their apical pole. Sera from P. vivax-infected patients recognized the recombinant, thereby suggesting that this protein is targeted by the immune response during infection.
Resumo:
Numerous techniques exist which can be used for the task of behavioural analysis and recognition. Common amongst these are Bayesian networks and Hidden Markov Models. Although these techniques are extremely powerful and well developed, both have important limitations. By fusing these techniques together to form Bayes-Markov chains, the advantages of both techniques can be preserved, while reducing their limitations. The Bayes-Markov technique forms the basis of a common, flexible framework for supplementing Markov chains with additional features. This results in improved user output, and aids in the rapid development of flexible and efficient behaviour recognition systems.
Resumo:
The dynamics of inter-regional communication within the brain during cognitive processing – referred to as functional connectivity – are investigated as a control feature for a brain computer interface. EMDPL is used to map phase synchronization levels between all channel pair combinations in the EEG. This results in complex networks of channel connectivity at all time–frequency locations. The mean clustering coefficient is then used as a descriptive feature encapsulating information about inter-channel connectivity. Hidden Markov models are applied to characterize and classify dynamics of the resulting complex networks. Highly accurate levels of classification are achieved when this technique is applied to classify EEG recorded during real and imagined single finger taps. These results are compared to traditional features used in the classification of a finger tap BCI demonstrating that functional connectivity dynamics provide additional information and improved BCI control accuracies.
Resumo:
Robotic mapping is the process of automatically constructing an environment representation using mobile robots. We address the problem of semantic mapping, which consists of using mobile robots to create maps that represent not only metric occupancy but also other properties of the environment. Specifically, we develop techniques to build maps that represent activity and navigability of the environment. Our approach to semantic mapping is to combine machine learning techniques with standard mapping algorithms. Supervised learning methods are used to automatically associate properties of space to the desired classification patterns. We present two methods, the first based on hidden Markov models and the second on support vector machines. Both approaches have been tested and experimentally validated in two problem domains: terrain mapping and activity-based mapping.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
O processamento de voz tornou-se uma tecnologia cada vez mais baseada na modelagem automática de vasta quantidade de dados. Desta forma, o sucesso das pesquisas nesta área está diretamente ligado a existência de corpora de domínio público e outros recursos específicos, tal como um dicionário fonético. No Brasil, ao contrário do que acontece para a língua inglesa, por exemplo, não existe atualmente em domínio público um sistema de Reconhecimento Automático de Voz (RAV) para o Português Brasileiro com suporte a grandes vocabulários. Frente a este cenário, o trabalho tem como principal objetivo discutir esforços dentro da iniciativa FalaBrasil [1], criada pelo Laboratório de Processamento de Sinais (LaPS) da UFPA, apresentando pesquisas e softwares na área de RAV para o Português do Brasil. Mais especificamente, o presente trabalho discute a implementação de um sistema de reconhecimento de voz com suporte a grandes vocabulários para o Português do Brasil, utilizando a ferramenta HTK baseada em modelo oculto de Markov (HMM) e a criação de um módulo de conversão grafema-fone, utilizando técnicas de aprendizado de máquina.
Resumo:
Sistemas de reconhecimento e síntese de voz são constituídos por módulos que dependem da língua e, enquanto existem muitos recursos públicos para alguns idiomas (p.e. Inglês e Japonês), os recursos para Português Brasileiro (PB) ainda são escassos. Outro aspecto é que, para um grande número de tarefas, a taxa de erro dos sistemas de reconhecimento de voz atuais ainda é elevada, quando comparada à obtida por seres humanos. Assim, apesar do sucesso das cadeias escondidas de Markov (HMM), é necessária a pesquisa por novos métodos. Este trabalho tem como motivação esses dois fatos e se divide em duas partes. A primeira descreve o desenvolvimento de recursos e ferramentas livres para reconhecimento e síntese de voz em PB, consistindo de bases de dados de áudio e texto, um dicionário fonético, um conversor grafema-fone, um separador silábico e modelos acústico e de linguagem. Todos os recursos construídos encontram-se publicamente disponíveis e, junto com uma interface de programação proposta, têm sido usados para o desenvolvimento de várias novas aplicações em tempo-real, incluindo um módulo de reconhecimento de voz para a suíte de aplicativos para escritório OpenOffice.org. São apresentados testes de desempenho dos sistemas desenvolvidos. Os recursos aqui produzidos e disponibilizados facilitam a adoção da tecnologia de voz para PB por outros grupos de pesquisa, desenvolvedores e pela indústria. A segunda parte do trabalho apresenta um novo método para reavaliar (rescoring) o resultado do reconhecimento baseado em HMMs, o qual é organizado em uma estrutura de dados do tipo lattice. Mais especificamente, o sistema utiliza classificadores discriminativos que buscam diminuir a confusão entre pares de fones. Para cada um desses problemas binários, são usadas técnicas de seleção automática de parâmetros para escolher a representaçãao paramétrica mais adequada para o problema em questão.
Resumo:
In many movies of scientific fiction, machines were capable of speaking with humans. However mankind is still far away of getting those types of machines, like the famous character C3PO of Star Wars. During the last six decades the automatic speech recognition systems have been the target of many studies. Throughout these years many technics were developed to be used in applications of both software and hardware. There are many types of automatic speech recognition system, among which the one used in this work were the isolated word and independent of the speaker system, using Hidden Markov Models as the recognition system. The goals of this work is to project and synthesize the first two steps of the speech recognition system, the steps are: the speech signal acquisition and the pre-processing of the signal. Both steps were developed in a reprogrammable component named FPGA, using the VHDL hardware description language, owing to the high performance of this component and the flexibility of the language. In this work it is presented all the theory of digital signal processing, as Fast Fourier Transforms and digital filters and also all the theory of speech recognition using Hidden Markov Models and LPC processor. It is also presented all the results obtained for each one of the blocks synthesized e verified in hardware
Resumo:
Sao Paulo State Research Foundation-FAPESP
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We introduce the notation of Markov chains and their properties, and give the definition of ergodic, irreducible and aperiodic chains with correspective examples. Then, the definition of hidden Markov models is given and their characteristics are examined. We formulate three basic problems regarding the hidden Markov models and discuss the solution of two of them - the Viterbi algorithm and the forward-backward algorithm.
Resumo:
Este trabajo de Tesis ha abordado el objetivo de dar robustez y mejorar la Detección de Actividad de Voz en entornos acústicos adversos con el fin de favorecer el comportamiento de muchas aplicaciones vocales, por ejemplo aplicaciones de telefonía basadas en reconocimiento automático de voz, aplicaciones en sistemas de transcripción automática, aplicaciones en sistemas multicanal, etc. En especial, aunque se han tenido en cuenta todos los tipos de ruido, se muestra especial interés en el estudio de las voces de fondo, principal fuente de error de la mayoría de los Detectores de Actividad en la actualidad. Las tareas llevadas a cabo poseen como punto de partida un Detector de Actividad basado en Modelos Ocultos de Markov, cuyo vector de características contiene dos componentes: la energía normalizada y la variación de la energía. Las aportaciones fundamentales de esta Tesis son las siguientes: 1) ampliación del vector de características de partida dotándole así de información espectral, 2) ajuste de los Modelos Ocultos de Markov al entorno y estudio de diferentes topologías y, finalmente, 3) estudio e inclusión de nuevas características, distintas de las del punto 1, para filtrar los pulsos de pronunciaciones que proceden de las voces de fondo. Los resultados de detección, teniendo en cuenta los tres puntos anteriores, muestran con creces los avances realizados y son significativamente mejores que los resultados obtenidos, bajo las mismas condiciones, con otros detectores de actividad de referencia. This work has been focused on improving the robustness at Voice Activity Detection in adverse acoustic environments in order to enhance the behavior of many vocal applications, for example telephony applications based on automatic speech recognition, automatic transcription applications, multichannel systems applications, and so on. In particular, though all types of noise have taken into account, this research has special interest in the study of pronunciations coming from far-field speakers, the main error source of most activity detectors today. The tasks carried out have, as starting point, a Hidden Markov Models Voice Activity Detector which a feature vector containing two components: normalized energy and delta energy. The key points of this Thesis are the following: 1) feature vector extension providing spectral information, 2) Hidden Markov Models adjustment to environment and study of different Hidden Markov Model topologies and, finally, 3) study and inclusion of new features, different from point 1, to reject the pronunciations coming from far-field speakers. Detection results, taking into account the above three points, show the advantages of using this method and are significantly better than the results obtained under the same conditions by other well-known voice activity detectors.