995 resultados para Sympathetic activity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanism by which adiposity can raise blood pressure is not fully understood. Leptin has been suggested as a possible cause of the arterial hypertension in obese subjects because leptin induces an increase in sympathetic activity. The aim of the present study is to evaluate serum leptin level, blood pressure, lipid profile, blood glucose, and insulin in obese women. Leptin, total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides were measured. Serum leptin was markedly higher in hypertensive obese women (92.3 +/- 22 ng/mL, n = 7) as compared with normotensive obese women (37.7 +/- 11 ng/mL, n = 7). Similarly, total cholesterol and LDL cholesterol were significantly elevated in the hypertensive group. No changes were observed in triglycerides and high-density lipoprotein cholesterol concentration between the 2 groups. There were no significant differences in plasma insulin concentration or blood glucose in both groups. In conclusion, our findings suggest a link among dyslipidemia, leptin level, and hypertension that might be relevant to the development of cardiovascular disease in obese subjects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bilateral common carotid occlusion (BCO) over a period of 60 s in conscious rats produces a biphasic presser response, consisting of an early (peak) and late (plateau) phase. In this study we investigated 1) the effects of lesions of the commissural nucleus of the solitary tract (commNTS) on the cardiovascular responses produced by BCO in conscious rats and 2) the autonomic and humoral mechanisms activated to produce the presser response to BCO in sham- and commNTS-lesioned rats. Both the peak and plateau of the presser response produced by BCO increased in commNTS-lesioned rats despite the impairment of chemoreflex responses induced by intravenous potassium cyanide. In sham rats sympathetic blockade with intravenous prazosin and metoprolol, but not vasopressin receptor blockade with the Manning compound, reduced both components of BCO. In commNTS-lesioned rats the sympathetic blockade or vasopressin receptor blockade reduced both components of BCO. The results showed 1) the sympathetic nervous system, but not vasopressin, is important for the presser response to BCO during 60 s in conscious sham rats; 2) in commNTS-lesioned rats, despite chemoreflex impairment, BCO produces an increased presser response dependent on sympathetic activity associated with vasopressin release; and 3) the increment in the presser response to BCO in commNTS-lesioned rats seems to depend only on vasopressin secretion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. 1. The aim of these experiments was to study the extent to which previous cold-acclimation improves the cold-tolerance of diabetic rats. 2. 2. Alloxan diabetic rats (fasting blood glucose higher than 200mg/dl) were used in the experiments. 3. 3. In Expt. 1, non-cold-acclimated control and diabetic rats were exposed to cold environment (7-9°C), and the percentage of survival calculated during a 12-day experimental period. In Expt. 2, the rats were previously cold-acelimated before alloxan or saline injection (diabetic and control cold-acclimated rats) and the survival rate was also assessed during a 12-day period in the cold. 4. 4. The percentage of survival of the non-cold-acclimated diabetic rats (Expt.l) was 19% compared with 79% of the diabetic cold-acclimated animals (Expt. 2). There were no deaths in the control groups. 5. 5. Cold-acclimated diabetic rats maintained a near-normal thermogenic response after noradrenaline injection. This response was impaired in non-cold-acclimated diabetic rats. 6. 6. The results of these experiments suggest that the enhanced cold-tolerance of diabetic cold-acclimated rats could be related to the increased sympathetic activity and enhanced insulin sensitivity in thermogenic tissues, such as brown fat. © 1987.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aldosterone acting on the brain stimulates sodium appetite and sympathetic activity by mechanisms that are still not completely clear. In the present study, we investigated the effects of chronic infusion of aldosterone and acute injection of the mineralocorticoid receptor (MR) antagonist RU 28318 into the fourth ventricle (4th V) on sodium appetite. Male Wistar rats (280-350 g) with a stainless-steel cannula in either the 4th V or lateral ventricle (LV) were used. Daily intake of 0.3 M NaCl increased to 46 ± 15 and 130 ± 6 ml/24 h after 6 days of infusion of 10 and 100 ng/h of aldosterone into the 4th V (intake with vehicle infusion: 2 ± 1 ml/24 h). Water intake fell slightly and not consistently, and food intake was not affected by aldosterone. Sodium appetite induced by diuretic (furosemide) combined with 24 h of a low-sodium diet fell from 12 ± 1.7 ml/2 h to 5.6 ± 0.8 ml/2 h after injection of the MR antagonist RU 28318 (100 ng/2 μl) into the 4th V. RU 28318 also reduced the intake of 0.3 M NaCl induced by 9 days of a low-sodium diet from 9.5 ± 2.6 ml/2 h to 1.2 ± 0.6 ml/2 h. Infusion of 100 or 500 ng/h of aldosterone into the LV did not affect daily intake of 0.3 M NaCl. The results are functional evidence that aldosterone acting on MR in the hindbrain activates a powerful mechanism involved in the control of sodium appetite. © 2013 the American Physiological Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of the present study was to determine if nitric oxide (NO) acting on the brain of bullfrog (Lithobates catesbeianus) is involved in arterial pressure and heart rate (HR) control by influencing sympathetic activity. We investigated the effect of intracerebroventricular injections of l-NMMA (a nonselective NO synthase inhibitor) on mean arterial blood pressure (MAP), HR and cutaneous vascular conductance (CVC) of pelvic skin after intravenous injection of α or β adrenergic blockers, prazosin or sotalol, respectively. Arterial pressure was directly measured by a telemetry sensor inserted in the aortic arch of animals. l-NMMA increased MAP, but did not change HR. This hypertensive response was inhibited by the pre-treatment with prazosin, but accentuated by sotalol. The effect of l-NMMA on MAP was also inhibited by i.v. injections of the ganglionic blocker, hexamethonium. Thus, NO acting on the brain of bullfrog seems to present a hypotensive effect influencing the sympathetic activity dependent on α and β adrenergic receptors in the periphery. © 2013 Elsevier Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ethanol (ETOH) consumption has been associated with endocrine and autonomic changes, including the development of hypertension. However, the sequence of pathophysiological events underlying the emergence of this effect is poorly understood. Aims: This study aimed to establish a time-course correlation between neuroendocrine and cardiovascular changes contributing to the development of hypertension following ETOH consumption. Methods: Male adult Wistar rats were subjected to the intake of increasing ETOH concentrations in their drinking water (first week: 5%, second week: 10%, third and fourth weeks: 20% v/v). Results: ETOH consumption decreased plasma and urinary volumes, as well as body weight and fluid intake. Furthermore, plasma osmolality, plasma sodium and urinary osmolality were elevated in the ETOH-treated rats. ETOH intake also induced a progressive increase in the mean arterial pressure (MAP), without affecting heart rate. Initially, this increasein MAP was correlated with increased plasma concentrations of adrenaline and noradrenaline. After the second week of ETOH treatment, plasma catecholamines returned to basal levels, and incremental increases were observed in plasma concentrations of vasopressin (AVP) and angiotensin II (ANG II). Conversely, plasma oxytocin, atrial natriuretic peptide, prolactin and the hypothalamus-pituitary-adrenal axis components were not significantly altered by ETOH. Conclusions: Taken together, these results suggest that increased sympathetic activity may contribute to the early increase in MAP observed inETOHtreated rats. However, the maintenance of this effect may be predominantly regulated by the long-term increase in the secretion of other circulating factors, such as AVP and ANG II, the secretion of both hormones being stimulated by the ETOH-induced dehydration. © The Author 2013. Medical Council on Alcohol and Oxford University Press. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The literature investigated the effects of chronic baroque music auditory stimulation on the cardiovascular system. However, it lacks in the literature the acute effects of different styles of music on cardiac autonomic regulation. To evaluate the acute effects of baroque and heavy metal music on heart rate variability (HRV) in women. The study was performed in 21 healthy women between 18 and 30 years old. We excluded persons with previous experience with music instrument and those who had affinity with the song styles. All procedures were performed in the same sound-proof room. We analyzed HRV in the time (standard deviation of normal-to-normal respiratory rate (RR) intervals, root-mean square of differences between adjacent normal RR intervals in a time interval, and the percentage of adjacent RR intervals with a difference of duration greater than 50 ms) and frequency (low frequency [LF], high frequency [HF], and LF/HF ratio) domains. HRV was recorded at rest for 10 min. Subsequently they were exposed to baroque or heavy metal music for 5 min through an earphone. After the first music exposure they remained at rest for more 5 min and them they were exposed again to baroque or heavy metal music. The sequence of songs was randomized for each individual. The power analysis provided a minimal number of 18 subjects. Shapiro-Wilk to verify normality of data and analysis of variance for repeated measures followed by the Bonferroni test for parametric variables and Friedman's followed by the Dunn's post-test for non-parametric distributions. During the analysis of the time-domain indices were not changed. In the frequency-domain analysis, the LF in absolute units was reduced during the heavy metal music stimulation compared to control. Acute exposure to heavy metal music affected the sympathetic activity in healthy women.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: Chronic exposure to intermittent hypoxia commonly induces the activation of sympathetic tonus and the disruption of glucose homoeostasis. However, the effects of exposure to acute intermittent hypoxia (AIH) on glucose homoeostasis are not yet fully elucidated. Herein, we evaluated parameters related to glucose metabolism in rats exposed to AIH. Methods: Male adult rats were submitted to 10 episodes of hypoxia (6% O2, for 45 s) interspersed with 5-min intervals of normoxia (21%), while the control (CTL) group was kept in normoxia. Results: Acute intermittent hypoxia rats presented higher fasting glycaemia, normal insulinaemia, increased lactataemia and similar serum lipid levels, compared to controls (n = 10, P < 0.05). Additionally, AIH rats exhibited increased glucose tolerance (GT) (n = 10, P < 0.05) and augmented insulin sensitivity (IS) (n = 10, P < 0.05). The p-Akt/Akt protein ratio was increased in the muscle, but not in the liver and adipose tissue of AIH rats (n = 6, P < 0.05). The elevated glycaemia in AIH rats was associated with a reduction in the hepatic glycogen content (n = 10, P < 0.05). Moreover, the AIH-induced increase in blood glucose concentration, as well as reduced hepatic glycogen content, was prevented by prior systemic administration of the β-adrenergic antagonist (P < 0.05). The effects of AIH on glycaemia and Akt phosphorylation were transient and not observed after 60 min. Conclusions: We suggest that AIH induces an increase in blood glucose concentration as a result of hepatic glycogenolysis recruitment through sympathetic activation. The augmentation of GT and IS might be attributed, at least in part, to increased β-adrenergic sympathetic stimulation and Akt protein activation in skeletal muscles, leading to a higher glucose availability and utilization. © 2013 Scandinavian Physiological Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rostral ventrolateral medulla (RVLM) contains the presympathetic neurons involved in cardiovascular regulation that has been implicated as one of the most important central sites for the antihypertensive action of moxonidine (an α2-adrenergic and imidazoline agonist). Here, we sought to evaluate the cardiovascular effects produced by moxonidine injected into another important brainstem site, the commissural nucleus of the solitary tract (commNTS). Mean arterial pressure (MAP), heart rate (HR), splanchnic sympathetic nerve activity (sSNA) and activity of putative sympathoexcitatory vasomotor neurons of the RVLM were recorded in conscious or urethane-anesthetized, and artificial ventilated male Wistar rats. In conscious or anesthetized rats, moxonidine (2.5 and 5. nmol/50. nl) injected into the commNTS reduced MAP, HR and sSNA. The injection of moxonidine into the commNTS also elicited a reduction of 28% in the activity of sympathoexcitatory vasomotor neurons of the RVLM. To further assess the notion that moxonidine could act in another brainstem area to elicit the antihypertensive effects, a group with electrolytic lesions of the commNTS or sham and with stainless steel guide-cannulas implanted into the 4th V were used. In the sham group, moxonidine (20. nmol/1. μl) injected into 4th V decreased MAP and HR. The hypotension but not the bradycardia produced by moxonidine into the 4th V was reduced in acute (1. day) commNTS-lesioned rats. These data suggest that moxonidine can certainly act in other brainstem regions, such as commNTS to produce its beneficial therapeutic effects, such as hypotension and reduction in sympathetic nerve activity. © 2013 IBRO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Bases Gerais da Cirurgia - FMB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Previous studies have shown that relaxation music increases the heart's parasympathetic modulation as well as reducing its sympathetic activity. However, what is lacking in the literature is information on the acute effects of different intensities of music on cardiac autonomic regulation. We aimed to evaluate the acute effects of baroque and heavy-metal music on cardiac autonomic regulation at different intensities. Method The study was performed in 16 healthy men aged between 18 and 25 years. The main outcomes were the geometric indices of heart-rate variability (HRV) [i.e. triangular index (RRtri); triangular interpolation of RR intervals (TINN) and Poincaré plot: SD1, SD2 and SD1/SD2 ratio]. First, HRV was recorded at rest for 10 min. The volunteers were then exposed to baroque or heavy-metal music for 5 min through an earphone; subjects were exposed to each song at three different sound levels (60–70, 70–80 and 80–90 decibels). After the first song, subjects remained at rest for 5 min before being exposed to the next song. The sequence of songs and sound intensity were randomised for each individual. Results Musical auditory stimulation with baroque music did not influence the geometric indices of HRV. The same was observed with heavy-metal musical auditory stimulation at the three sound-level ranges. Conclusion Musical auditory stimulation at different sound intensities did not influence the geometric indices of HRV in men.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic intermittent hypoxia (CIH) has been identified as a relevant risk factor for the development of enhanced sympathetic outflow and arterial hypertension. Several studies have highlighted the importance of peripheral chemoreceptors for the cardiovascular changes elicited by CIH. However, the effects of CIH on the central mechanisms regulating sympathetic outflow are not fully elucidated. Our research group has explored the hypothesis that the enhanced sympathetic drive following CIH exposure is, at least in part, dependent on alterations in the respiratory network and its interaction with the sympathetic nervous system. In this report, I discuss the changes in the discharge profile of baseline sympathetic activity in rats exposed to CIH, their association with the generation of active expiration and the interactions between expiratory and sympathetic neurones after CIH conditioning. Together, these findings are consistent with the theory that mechanisms of central respiratory–sympathetic coupling are a novel factor in the development of neurogenic hypertension.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)