997 resultados para Symbol transition density
Resumo:
Research on transition-metal nanoalloy clusters composed of a few atoms is fascinating by their unusual properties due to the interplay among the structure, chemical order and magnetism. Such nanoalloy clusters, can be used to construct nanometer devices for technological applications by manipulating their remarkable magnetic, chemical and optical properties. Determining the nanoscopic features exhibited by the magnetic alloy clusters signifies the need for a systematic global and local exploration of their potential-energy surface in order to identify all the relevant energetically low-lying magnetic isomers. In this thesis the sampling of the potential-energy surface has been performed by employing the state-of-the-art spin-polarized density-functional theory in combination with graph theory and the basin-hopping global optimization techniques. This combination is vital for a quantitative analysis of the quantum mechanical energetics. The first approach, i.e., spin-polarized density-functional theory together with the graph theory method, is applied to study the Fe$_m$Rh$_n$ and Co$_m$Pd$_n$ clusters having $N = m+n \leq 8$ atoms. We carried out a thorough and systematic sampling of the potential-energy surface by taking into account all possible initial cluster topologies, all different distributions of the two kinds of atoms within the cluster, the entire concentration range between the pure limits, and different initial magnetic configurations such as ferro- and anti-ferromagnetic coupling. The remarkable magnetic properties shown by FeRh and CoPd nanoclusters are attributed to the extremely reduced coordination number together with the charge transfer from 3$d$ to 4$d$ elements. The second approach, i.e., spin-polarized density-functional theory together with the basin-hopping method is applied to study the small Fe$_6$, Fe$_3$Rh$_3$ and Rh$_6$ and the larger Fe$_{13}$, Fe$_6$Rh$_7$ and Rh$_{13}$ clusters as illustrative benchmark systems. This method is able to identify the true ground-state structures of Fe$_6$ and Fe$_3$Rh$_3$ which were not obtained by using the first approach. However, both approaches predict a similar cluster for the ground-state of Rh$_6$. Moreover, the computational time taken by this approach is found to be significantly lower than the first approach. The ground-state structure of Fe$_{13}$ cluster is found to be an icosahedral structure, whereas Rh$_{13}$ and Fe$_6$Rh$_7$ isomers relax into cage-like and layered-like structures, respectively. All the clusters display a remarkable variety of structural and magnetic behaviors. It is observed that the isomers having similar shape with small distortion with respect to each other can exhibit quite different magnetic moments. This has been interpreted as a probable artifact of spin-rotational symmetry breaking introduced by the spin-polarized GGA. The possibility of combining the spin-polarized density-functional theory with some other global optimization techniques such as minima-hopping method could be the next step in this direction. This combination is expected to be an ideal sampling approach having the advantage of avoiding efficiently the search over irrelevant regions of the potential energy surface.
Resumo:
An electronic theory is developed, which describes the ultrafast demagnetization in itinerant ferromagnets following the absorption of a femtosecond laser pulse. The present work intends to elucidate the microscopic physics of this ultrafast phenomenon by identifying its fundamental mechanisms. In particular, it aims to reveal the nature of the involved spin excitations and angular-momentum transfer between spin and lattice, which are still subjects of intensive debate. In the first preliminary part of the thesis the initial stage of the laser-induced demagnetization process is considered. In this stage the electronic system is highly excited by spin-conserving elementary excitations involved in the laser-pulse absorption, while the spin or magnon degrees of freedom remain very weakly excited. The role of electron-hole excitations on the stability of the magnetic order of one- and two-dimensional 3d transition metals (TMs) is investigated by using ab initio density-functional theory. The results show that the local magnetic moments are remarkably stable even at very high levels of local energy density and, therefore, indicate that these moments preserve their identity throughout the entire demagnetization process. In the second main part of the thesis a many-body theory is proposed, which takes into account these local magnetic moments and the local character of the involved spin excitations such as spin fluctuations from the very beginning. In this approach the relevant valence 3d and 4p electrons are described in terms of a multiband model Hamiltonian which includes Coulomb interactions, interatomic hybridizations, spin-orbit interactions, as well as the coupling to the time-dependent laser field on the same footing. An exact numerical time evolution is performed for small ferromagnetic TM clusters. The dynamical simulations show that after ultra-short laser pulse absorption the magnetization of these clusters decreases on a time scale of hundred femtoseconds. In particular, the results reproduce the experimentally observed laser-induced demagnetization in ferromagnets and demonstrate that this effect can be explained in terms of the following purely electronic non-adiabatic mechanism: First, on a time scale of 10–100 fs after laser excitation the spin-orbit coupling yields local angular-momentum transfer between the spins and the electron orbits, while subsequently the orbital angular momentum is very rapidly quenched in the lattice on the time scale of one femtosecond due to interatomic electron hoppings. In combination, these two processes result in a demagnetization within hundred or a few hundred femtoseconds after laser-pulse absorption.
Resumo:
The structural, electronic and magnetic properties of one-dimensional 3d transition-metal (TM) monoatomic chains having linear, zigzag and ladder geometries are investigated in the frame-work of first-principles density-functional theory. The stability of long-range magnetic order along the nanowires is determined by computing the corresponding frozen-magnon dispersion relations as a function of the 'spin-wave' vector q. First, we show that the ground-state magnetic orders of V, Mn and Fe linear chains at the equilibrium interatomic distances are non-collinear (NC) spin-density waves (SDWs) with characteristic equilibrium wave vectors q that depend on the composition and interatomic distance. The electronic and magnetic properties of these novel spin-spiral structures are discussed from a local perspective by analyzing the spin-polarized electronic densities of states, the local magnetic moments and the spin-density distributions for representative values q. Second, we investigate the stability of NC spin arrangements in Fe zigzag chains and ladders. We find that the non-collinear SDWs are remarkably stable in the biatomic chains (square ladder), whereas ferromagnetic order (q =0) dominates in zigzag chains (triangular ladders). The different magnetic structures are interpreted in terms of the corresponding effective exchange interactions J(ij) between the local magnetic moments μ(i) and μ(j) at atoms i and j. The effective couplings are derived by fitting a classical Heisenberg model to the ab initio magnon dispersion relations. In addition they are analyzed in the framework of general magnetic phase diagrams having arbitrary first, second, and third nearest-neighbor (NN) interactions J(ij). The effect of external electric fields (EFs) on the stability of NC magnetic order has been quantified for representative monoatomic free-standing and deposited chains. We find that an external EF, which is applied perpendicular to the chains, favors non-collinear order in V chains, whereas it stabilizes the ferromagnetic (FM) order in Fe chains. Moreover, our calculations reveal a change in the magnetic order of V chains deposited on the Cu(110) surface in the presence of external EFs. In this case the NC spiral order, which was unstable in the absence of EF, becomes the most favorable one when perpendicular fields of the order of 0.1 V/Å are applied. As a final application of the theory we study the magnetic interactions within monoatomic TM chains deposited on graphene sheets. One observes that even weak chain substrate hybridizations can modify the magnetic order. Mn and Fe chains show incommensurable NC spin configurations. Remarkably, V chains show a transition from a spiral magnetic order in the freestanding geometry to FM order when they are deposited on a graphene sheet. Some TM-terminated zigzag graphene-nanoribbons, for example V and Fe terminated nanoribbons, also show NC spin configurations. Finally, the magnetic anisotropy energies (MAEs) of TM chains on graphene are investigated. It is shown that Co and Fe chains exhibit significant MAEs and orbital magnetic moments with in-plane easy magnetization axis. The remarkable changes in the magnetic properties of chains on graphene are correlated to charge transfers from the TMs to NN carbon atoms. Goals and limitations of this study and the resulting perspectives of future investigations are discussed.
Resumo:
A conceptually new approach is introduced for the decomposition of the molecular energy calculated at the density functional theory level of theory into sum of one- and two-atomic energy components, and is realized in the "fuzzy atoms" framework. (Fuzzy atoms mean that the three-dimensional physical space is divided into atomic regions having no sharp boundaries but exhibiting a continuous transition from one to another.) The new scheme uses the new concept of "bond order density" to calculate the diatomic exchange energy components and gives them unexpectedly close to the values calculated by the exact (Hartree-Fock) exchange for the same Kohn-Sham orbitals
Resumo:
The front speed of the Neolithic (farmer) spread in Europe decreased as it reached Northern latitudes, where the Mesolithic (huntergatherer) population density was higher. Here, we describe a reaction diffusion model with (i) an anisotropic dispersion kernel depending on the Mesolithic population density gradient and (ii) a modified population growth equation. Both effects are related to the space available for the Neolithic population. The model is able to explain the slowdown of the Neolithic front as observed from archaeological data
Resumo:
The topic of this work is 3d transition metals deposited on graphite. Spin-polarised density-functional calculations are used to obtain the magnetic moments of deposited adatoms and dimers. Interatomic potentials are also deduced. These are used in molecular dynamics simulations to study cluster formation and to investigate cluster morphology.
Resumo:
Objective: The objective of this study was to explore the relationship between low density lipoprotein (LDL) and dendritic cell (DC) activation, based upon the hypothesis that reactive oxygen species (ROS)-mediated modification of proteins that may be present in local DC microenvironments could be important as mediators of this activation. Although LDL are known to be oxidised in vivo, and taken up by macrophages during atherogenesis; their effect on DC has not been explored previously. Methods: Human DCs were prepared from peripheral blood monocytes using GM-CSF and IL-4. Plasma LDLs were isolated by sequential gradient centrifugation, oxidised in CuSO4, and oxidation arrested to yield mild, moderate and highly oxidised LDL forms. DCs exposed to these LDLs were investigated using combined phenotypic, functional (autologous T cell activation), morphological and viability assays. Results: Highly-oxidised LDL increased DC HLA-DR, CD40 and CD86 expression, corroborated by increased DC-induced T cell proliferation. Both native and oxidised LDL induced prominent DC clustering. However, high concentrations of highly-oxidised LDL inhibited DC function, due to increased DC apoptosis. Conclusions: This study supports the hypothesis that oxidised LDL are capable of triggering the transition from sentinel to messenger DC. Furthermore, the DC clustering–activation–apoptosis sequence in the presence of different LDL forms is consistent with a regulatory DC role in immunopathogenesis of atheroma. A sequence of initial accumulation of DC, increasing LDL oxidation, and DC-induced T cell activation, may explain why local breach of tolerance can occur. Above a threshold level, however, supervening DC apoptosis limits this, contributing instead to the central plaque core.
Resumo:
Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown- 6){Cp*Fe(η4-C10H8)}] (K1), [K(18-crown-6){Cp*Fe(η4-C14H10)}] (K2), [Cp*Fe(η4-C10H8)] (1), and [Cp*Fe(η4-C14H10)] (2) were synthesized and characterized by NMR, UV−vis, and 57Fe Mössbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η4-C10H8)]− (1−) and [Cp*Fe(η4-C14H10)]− (2−) and reversibly oxidized to the cations [Cp*Fe(η6-C10H8)]+ (1+) and [Cp*Fe(η6-C14H10)]+ (2+). Reduced orbital charges and spin densities of the naphthalene complexes 1−/0/+ and the anthracene derivatives 2−/0/+ were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1− and 2− are best represented by low-spin FeII ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin FeI ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin FeII ion coordinated to a ligand radical L•−. Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.
Resumo:
The transition parameter is based on the electron characteristics close to the Earth's dayside magnetopause, but reveals systematic ordering of other, independent, data such as the ion flow, density and temperature and the rientation and strength of the magnetic field. Potentially, therefore, it is a very useful tool for resolving ambiguities in a sequence of satellite data caused by the effects of structure and motion of the boundary; however, its application has been limited because there has been no clear understanding of how it works. We present an analysis of data from the AMPTE-UKS satellite which shows that the transition parameter orders magnetopause data because magnetic reconnection generates newly-opened field lines which coat the boundary: a direct relationship is found with the time elapsed since the boundary-layer field line was opened. A simple model is used to reproduce this behaviour.
Resumo:
Recently, de Roany and Pacheco (Gen Relativ Gravit, doi:10.1007/s10714-010-1069-2) performed a Newtonian analysis on the evolution of perturbations for a class of relativistic cosmological models with Creation of Cold Dark Matter (CCDM) proposed by the present authors (Lima et al. in JCAP 1011:027, 2010). In this note we demonstrate that the basic equations adopted in their work do not recover the specific (unperturbed) CCDM model. Unlike to what happens in the original CCDM cosmology, their basic conclusions refer to a decelerating cosmological model in which there is no transition from a decelerating to an accelerating regime as required by SNe type Ia and complementary observations.
Resumo:
We investigate the critical behaviour of a probabilistic mixture of cellular automata (CA) rules 182 and 200 (in Wolfram`s enumeration scheme) by mean-field analysis and Monte Carlo simulations. We found that as we switch off one CA and switch on the other by the variation of the single parameter of the model, the probabilistic CA (PCA) goes through an extinction-survival-type phase transition, and the numerical data indicate that it belongs to the directed percolation universality class of critical behaviour. The PCA displays a characteristic stationary density profile and a slow, diffusive dynamics close to the pure CA 200 point that we discuss briefly. Remarks on an interesting related stochastic lattice gas are addressed in the conclusions.
Resumo:
We propose a method to compute the entanglement degree E of bipartite systems having dimension 2 x 2 and demonstrate that the partial transposition of density matrix, the Peres criterion, arise as a consequence Of Our method. Differently from other existing measures of entanglement, the one presented here makes possible the derivation of a criterion to verify if an arbitrary bipartite entanglement will suffers sudden death (SD) based only on the initial-state parameters. Our method also makes possible to characterize the SD as a dynamical quantum phase transition, with order parameter epsilon. having a universal critical exponent -1/2. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Thermal properties and degree of conversion (DC%) of two composite resins (microhybrid and nanocomposite) and two photo-activation methods (continuous and gradual) displayed by the light-emitting diode (LED) light-curing units (LCUs) were investigated in this study. Differential scanning calorimetry (DSC) thermal analysis technique was used to investigate the glass transition temperature (T(g)) and degradation temperature. The DC% was determined by Fourier transform infrared spectroscopy (FT-IR). The results showed that the microhybrid composite resin presented the highest T(g) and degradation temperature values, i.e., the best thermal stability. Gradual photo-activation methods showed higher or similar T(g) and degradation temperature values when compared to continuous method. The Elipar Freelight 2 (TM) LCU showed the lowest T(g) values. With respect to the DC%, the photo-activation method did not influence the final conversion of composite resins. However, Elipar Freelight 2 (TM) LCU and microhybrid resin showed the lowest DC% values. Thus, the presented results suggest that gradual method photo-activation with LED LCUs provides adequate degree of conversion without promoting changes in the polymer chain of composite resins. However, the thermal properties and final conversion of composite resins can be influenced by the kind of composite resin and LCU.
Resumo:
Phenomenological orbital-polarizition (OP) terms have been repeatedly introduced in the single-particle equations of spin-density-functional theory, in order to improve the description of orbital magnetic moments in systems containing transition metal ions. Here we show that these ad hoc corrections can be interpreted as approximations to the exchange-correlation vector potential A(xc) of current-density functional theory (CDFT). This connection provides additional information on both approaches: phenomenological OP terms are connected to first-principles theory, leading to a rationale for their empirical success and a reassessment of their limitations and the approximations made in their derivation. Conversely, the connection of OP terms with CDFT leads to a set of simple approximations to the CDFT potential A(xc), with a number of desirable features that are absent from electron-gas-based functionals. (C) 2008 Wiley Periodicals, Inc.
Resumo:
Although the amine sulfur dioxide chemistry was well characterized in the past both experimentally and theoretically, no systematic Raman spectroscopic study describes the interaction between N,N-dimethylaniline (DMA) and sulfur dioxide (SO(2)). The formation of a deep red oil by the reaction of SO(2) with DMA is an evidence of the charge transfer (CT) nature of the DMA-SO(2) interaction. The DMA -SO(2) normal Raman spectrum shows the appearance of two intense bands at 1110 and 1151 cm(-1), which are enhanced when resonance is approached. These bands are assigned to nu(s)(SO(2)) and nu(phi-N) vibrational modes, respectively, confirming the interaction between SO(2) and the amine via the nitrogen atom. The dimethyl group steric effect favors the interaction of SO(2) with the ring pi electrons, which gives rise to a pi-pi* low-energy CT electronic transition, as confirmed by time-dependent density functional theory (TDDFT) calculations. In addition, the calculated Raman DMA-SO(2) spectrum at the B3LYP/6-311++g(3df,3pd) level shows good agreement with the experimental results (vibrational wavenumbers and relative intensities), allowing a complete assignment of the vibrational modes. A better understanding of the intermolecular interactions in this model system can be extremely useful in designing new materials to absorb, detect, or even quantify SO(2). Copyright (C) 2009 John Wiley & Sons, Ltd.