905 resultados para Sustainable Urban Drainage Systems.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo teve como objetivo investigar o impacto das atividades antropogênicas da cidade de Belém pela comparação da qualidade da água e das comunidades de larvas de peixes em dois igarapés que desembocam no rio Guamá. Um dos igarapés atravessa um subúrbio pobre e populoso de Belém, enquanto o outro é localizado em uma ilha de Belém, declarada Área de Proteção Ambiental desde 1997. Dois pontos de coletas foram definidos em cada igarapé e monitorados durante oito horas, a cada três meses e durante um ano. O igarapé em região urbana apresentou fortes alterações na qualidade da água, durante o ano todo e em todas as marés, e isto deve se essencialmente a presença de um elevado número de coliformes termotolerantes. Poucas larvas foram encontradas. A água foi considerada imprópria para uso e atividades humanas, assim como para a vida aquática. O igarapé da ilha apresentou primeiros sinais de contaminação por nutrientes e bactéria durante o período chuvoso, parcialmente decorrente de fontes de poluição difusa. Em ambos os córregos, as comunidades larvais foram quase exclusivamente compostas de clupeiformes. Todos os estágios de desenvolvimento larval foram encontrados. Densidades e proporções mais elevadas de larvas recém eclodidas foram registradas durante a estação seca e associadas à presença de nitrato. Resultados apontam a necessidade de desenvolver um sistema de drenagem urbano para esgoto e água pluvial na maior brevidade, e recomenda um estudo de monitoramento integrado do igarapé na Área de Proteção Ambiental.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cities are key locations where Sustainability needs to be addressed at all levels, as land is a finite resource. However, not all urban spaces are exploited at best, and land developers often evaluate unused, misused, or poorly-designed urban portions as impracticable constraints. Further, public authorities lose the challenge to enable and turn these urban spaces into valuable opportunities where Sustainable Urban Development may flourish. Arguing that these spatial elements are at the centre of SUD, the paper elaborates a prototype in the form of a conceptual strategic planning framework, committed to an effective recycling of the city spaces using a flexible and multidisciplinary approach. Firstly, the research focuses upon a broad review of Sustainability literature, highlighting established principles and guidelines, building a sound theoretical base for the new concept. Hence, it investigates origins, identifies and congruently suggests a definition, characterisation and classification for urban “R-Spaces”. Secondly, formal, informal and temporary fitting functions are analysed and inserted into a portfolio meant to enhance adaptability and enlarge the choices for the on-site interventions. Thirdly, the study outlines ideal quality requirements for a sustainable planning process. Then, findings are condensed in the proposal, which is articulated in the individuation of tools, actors, plans, processes and strategies. Afterwards, the prototype is tested upon case studies: Solar Community (Casalecchio di Reno, Bologna) and Hyllie Sustainable City Project, the latter developed via an international workshop (ACSI-Camp, Malmö, Sweden). Besides, the qualitative results suggest, inter alia, the need to right-size spatial interventions, separate structural and operative actors, involve synergies’ multipliers and intermediaries (e.g. entrepreneurial HUBs, innovation agencies, cluster organisations…), maintain stakeholders’ diversity and create a circular process open for new participants. Finally, the paper speculates upon a transfer of the Swedish case study to Italy, and then indicates desirable future researches to favour the prototype implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processes of founding and expanding cities in coastal areas have undergone great changes over time driven by environmental conditions. Coastal settlements looked for places above flood levels and away from swamps and other wetlands whenever possible. As populations grew, cities were extending trying to avoid low and wet lands. No city has been able to limit its growth. The risk of flooding can never be eliminated, but only reduced to the extent possible. Flooding of coastal areas is today dramatically attributed to eustasic sea level rise caused by global climate change. This can be inaccurate. Current climate change is generating an average sea level upward trend, but other regional and local factors result in this trend being accentuated in some places or attenuated, and even reversed, in others. Then, the intensity and frequency of coastal flooding around the planet, although not so much as a unique result of this general eustasic elevation, but rather of the superposition of marine and crustal dynamic elements, the former also climate-related, which give rise to a temporary raising in average sea level in the short term. Since the Little Ice Age the planet has been suffering a global warming change leading to sea level rise. The idea of being too obeying to anthropogenic factors may be attributed to Arrhenius (1896), though it is of much later highlight after the sixties of the last century. Never before, the human factor had been able of such an influence on climate. However, other types of changes in sea levels became apparent, resulting from vertical movements of the crust, modifications of sea basins due to continents fracturing, drifting and coming together, or to different types of climate patterns. Coastal zones are then doubly susceptible to floods. Precipitation immediately triggers pluvial flooding. If it continues upland or when snow and glaciers melt eventually fluvial flooding can occur. The urban development presence represents modifying factors. Additional interference is caused by river and waste water drainage systems. Climate also influences sea levels in coastal areas, where tides as well as the structure and dynamic of the geoid and its crust come into play. From the sea, waters can flood and break or push back berms and other coastline borders. The sea level, controlling the mouth of the main channel of the basin's drainage system, is ultimately what governs flood levels. A temporary rise in sea level acts as a dam at the mouth. Even in absence of that global change, so, floods are likely going to increase in many urban coastal areas. Some kind of innovative methodologies and practices should be needed to get more flood resilience cities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light rail systems have proliferated in Spain in the last decade, following a tendency that is common not only in other European countries but also in other parts of the world. This paper reviews the benefits of light rail systems, both related to environmental issues and mobility issues. It analyses the evolution of light rail projects in Spain and shows that light rail systems in this country have evolved towards an extensive use of public-private partnerships. The analysis of the Spanish projects, however, does not contribute any conclusive evidence about whether public-private partnerships have been more efficient than publicly owned enterprises in building and operating light rail systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En un contexto de rápido crecimiento de la población urbana y de cambio climático global, la consecución de un modelo de desarrollo sostenible pasa inevitablemente por construir ciudades más sostenibles. Basado en una intensiva impermeabilización de los suelos, el modelo actual de desarrollo urbano modifica profundamente el ciclo natural del agua en las ciudades. La drástica reducción de la capacidad de infiltración del terreno hace que gran parte de la precipitación se transforme en escorrentía superficial, que se concentra rápidamente originando grandes caudales punta. Además, el lavado de las superficies urbanas aporta altas cargas de contaminación a la escorrentía que producen importantes impactos en los medios receptores. Esta realidad motiva la realización de la presente tesis doctoral cuyo objetivo general es contribuir a la consecución de ciudades sostenibles a través de la gestión integral de las aguas de lluvia en los entornos urbanos. Con el objetivo prioritario de minimizar los riesgos de inundación, el enfoque convencional del drenaje urbano desarrolló las primeras soluciones en relación a los caudales punta, centralizando su gestión en el sistema de saneamiento e incorporando la escorrentía al mismo tan rápido como fuera posible. Pero en episodios de lluvias intensas la sobrecarga tanto hidráulica como de contaminación del sistema provoca un incremento de la vulnerabilidad de la población a las inundaciones, una falta de garantía de salud pública y graves impactos sobre los medios receptores. La aprobación en 1987 del CleanWaterAct en Estados Unidos, en el que se reconoció por primera vez el problema de la contaminación aportada por la escorrentía urbana, fue el punto de partida de un nuevo enfoque que promueve un conjunto de técnicas de drenaje que integran aspectos como cantidad de agua, calidad de agua y servicio a la sociedad. Estas técnicas, conocidas como Sistemas de Drenaje Sostenible (SUDS), son consideradas como las técnicas más apropiadas para gestionar los riesgos resultantes de la escorrentía urbana así como para contribuir a la mejora medioambiental de la cuenca y de los ecosistemas receptores. La experiencia internacional apunta a que la efectiva incorporación de los SUDS como sistemas habituales en el desarrollo urbano debe basarse en tres elementos clave: El desarrollo de un marco normativo, la aplicación de instrumentos económicos y la participación ciudadana activa en el proceso. Además se identifica como una de las líneas estratégicas para avanzar en la resolución de la problemática el desarrollo y aplicación de metodologías que apoyen el proceso de toma de decisiones basadas en indicadores cuantificables. Convergiendo con esta línea estratégica la presente tesis doctoral define unos indicadores de sostenibilidad focalizados en una temática no desarrollada hasta el momento, la gestión integral de las aguas de lluvia. Para ello, se aplica el marco analítico Presión-Estado–Respuesta bajo un enfoque que rebasa el sistema de saneamiento, enmarcando la gestión de las aguas de lluvia en las múltiples y complejas interrelaciones del sistema urbano. Así se determinan indicadores de presión, de estado y de respuesta para cada elemento del sistema urbano (Medio Receptor – Cuenca Urbana – Sistema de Saneamiento), definiendo para cada indicador el objetivo específico, la unidad de medición, la tendencia deseada de evolución y la periodicidad de seguimiento recomendada. La validez de la metodología propuesta se comprueba en el estudio de caso de la ciudad de Zaragoza. La determinación de los indicadores permite realizar un diagnóstico y definir unas líneas estratégicas de actuación que contemplan mejoras no sólo en el sistema de saneamiento y drenaje urbano, sino también en el marco normativo, urbanístico, económico, social y ambiental. Finalmente, se concluye que la integración de la gestión de las aguas de lluvia en las políticas de ordenación del territorio, el desarrollo de mecanismos de coordinación institucional, la mejora del marco normativo y la aplicación de instrumentos económicos son elementos clave para la gestión integral de las aguas de lluvia y el consecuente desarrollo de ciudades más sostenibles en España. In a context of rapid urbanization and global climate change, coping with sustainable development challenges requires the development of sustainable cities. Based on an intensive soil permeability reduction, the current development model deeply modifies the natural water cycle in the urban environment. Reduction of soil infiltration capacity turns most of the rainwater into surface runoff, rapidly leading to heavy peak flows which are highly contaminated due to the flushing of the urban surface. This is the central motivation for this thesis, which aspires to contribute to the attainment of more sustainable cities through an integrated management of rainwater in urban environments. With the main objective of minimizing floods, the conventional approach of drainage systems focused on peak flows, centralizing their management on the sewage system and incorporating flows as fast as possible. But during heavy rains the hydraulic and contamination overcharge of the sewage system leads to an increase in the vulnerability of the population, in regards to floods and lack of public health, as well as to severe impacts in receiving waters. In 1987, the United States’Clean Water Act Declaration, which firstly recognized the problem of runoff contamination, was the starting point of a new approach that promotes a set of techniques known as Sustainable Drainage Systems (SUDS)that integrates issues such as quantity of water, quality of water and service to society. SUDS are considered the most suitable set of techniques to manage the risks resulting from urban runoff, as well as to contribute to the environmental enhancement of urban basins and of the aquatic ecosystems. International experience points out that the effective adoption of SUDS as usual systems in urban development must be based on three key elements: The enhancement of the legal frame, the application of economic tools and the active public participation throughout the process. Additionally, one of the strategic actions to advance in the resolution of the problem is the development and application of methodologies based in measurable indicators that support the decision making process. In that line, this thesis defines a set of sustainability indicators focused in integrated management of rainwater. To that end, the present document applies the analytical frame Pressure – State – Response under an approach that goes beyond the sewage system and considers the multiple and complex interrelations within urban systems. Thus, for the three basic elements that interact in the issue (Receiving Water Bodies – Urban Basin – Sewage System) a set of Pressure – State – Response indicators are proposed, and the specific aim, the measurement unit, the desired evolution trend and the regularity of monitoring are defined for each of the indicators. The application of the proposed indicators to the case study of the city of Zaragoza acknowledged their suitability for the definition of lines of action that encompass not only the enhancement of the performance of sewage and drainage systems during rain events, but also the legal, urban, economic, social and environmental framework. Finally, this thesis concludes that the inclusion of urban rainwater management issues in the definition of regional planning policies, the development of mechanisms to attain an effective institutional coordination, the enhancement of the legal framework and the application of economic tools are key elements in order to achieve an integrated rainwater management and the subsequent sustainability of urban development in Spain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The benefits of urban agriculture are many and well documented, ranging from health improvement to community betterment, more sustainable urban development and environment protection. On the negative side, urban soils are commonly enriched in toxic trace elements that have accumulated over time through the deposition of atmospheric particles (generated by automotive traffic, heating systems, historical industrial activities and resuspended street dust), and the uncontrolled disposal of domestic, commercial and industrial wastes. This in turn has given rise to concerns about the level of exposure of urban farmers to these elements and the potential health hazards associated with this exposure. Research efforts in this field have started relatively recently and have almost systematically omitted the influence of Sb and Se, and to a lesser extent of As, although all three have proven toxic effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Conceptual Sketch], untitled. Ink sketch on spiral notebook paper, 8 1/4 x 10 3/4 inches [from photographic copy by Lance Burgharrdt]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Conceptual Sketches], untitled. Ink sketches on spiral notebook paper, 8 1/4 x 10 3/4 inches [from photographic copy by Lance Burgharrdt]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Conceptual Sketches], untitled. Ink sketches on spiral notebook paper, 8 1/4 x 10 3/4 inches [from photographic copy by Lance Burgharrdt]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Conceptual Sketches], untitled. Digital image only of blue ink sketches on spiral notebook paper, initialed, 8 1/4 x 10 3/4 inches

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stormwater management has long been a critical societal and environmental challenge for communities. An increasing number of municipalities are turning to novel approaches such as green infrastructure to develop more sustainable stormwater management systems. However, there is a need to better understand the technological decision-making processes that lead to specific outcomes within urban stormwater governance systems. We used the social-ecological system (SES) framework to build a classification system for identifying significant variables that influence urban stormwater governance decisions related to green infrastructure adoption. To adapt the framework, we relied on findings from observations at national stormwater meetings in combination with a systematic literature review on influential factors related to green infrastructure adoption. We discuss our revisions to the framework that helped us understand the decision by municipal governments to adopt green infrastructure. Remaining research needs and challenges are discussed regarding the development of an urban stormwater SES framework as a classification tool for knowledge accumulation and synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research-design thesis explores the implementation of Regenerative Stormwater Conveyance (RSC) as a retrofit of an existing impervious drainage system in a small catchment in the degraded Jones Falls watershed in Baltimore City. An introduction to RSC is provided, placing its development within a theoretical context of novel ecosystems, biomimicry and Nassauer and Opdam’s (2008) model of landscape innovation. The case site is in Baltimore’s Hampden neighborhood on City-owned land adjacent to rowhomes, open space and an access point to a popular wooded trail along a local stream. The design proposal employs RSC to retrofit an ill-performing stormwater system, simultaneously providing a range of ecological, social and economic services; water quantity, water quality and economic performance of the proposed RSC are quantified. While the proposed design is site-specific the model is adaptable for retrofitting other small-scale impervious drainage systems, providing a strategic tool in addressing Baltimore City’s stormwater challenges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High urban transport energy consumption is directly influenced by transport energy dependence. Dramatic reductions in urban transport energy dependence or consumption are not yet being widely observed despite the variety of urban planning tools currently available. A new urban development framework is presented to tackle this issue that makes use of a recently developed and successfully trialed GIS-based tool, the Transport Energy Specification (TES). The TES was simulated on a neighborhood in Sao Carlos, Brazil. In the simulation, energy dependence was reduced by a factor of 8 through activity location or infrastructure modifications to the built environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agriculture in limited resource areas is characterized by small farms which an generally too small to adequately support the needs of an average farm family. The farming operation can be described as a low input cropping system with the main energy source being manual labor, draught animals and in some areas hand tractors. These farming systems are the most important contributor to the national economy of many developing countries. The role of tillage is similar in dryland agricultural systems in both the high input (HICS) and low input cropping systems (LICS), however, wet cultivation or puddling is unique to lowland rice-based systems in low input cropping systems. Evidence suggest that tillage may result in marginal increases in crop yield in the short term, however, in the longer term it may be neutral or give rise to yield decreases associated with soil structural degradation. On marginal soils, tillage may be required to prepare suitable seedbeds or to release adequate Nitrogen through mineralization, but in the longer term, however, tillage reduces soil organic matter content, increases soil erodibility and the emission of greenhouse gases. Tillage in low input cropping systems involves a very large proportion of the population and any changes: in current practices such as increased mechanization will have a large social impact such as increased unemployment and increasing feminization of poverty, as mechanization may actually reduce jobs for women. Rapid mechanization is likely to result in failures, but slower change, accompanied by measures to provide alternative rural employment, might be beneficial. Agriculture in limited resource areas must produce the food and fiber needs of their community, and its future depends on the development of sustainable tillage/cropping systems that are suitable for the soil and climatic conditions. These should be based on sound biophysical principles and meet the needs of and he acceptable to the farming communities. Some of the principle requirements for a sustainable system includes the maintenance of soil health, an increase in the rain water use efficiency of the system, increased use of fertilizer and the prevention of erosion. The maintenance of crop residues on the surface is paramount for meeting these requirements, and the competing use of crop residues must be met from other sources. These requirements can be met within a zonal tillage system combined with suitable agroforestry, which will reduce the need for crop residues. It is, however, essential that farmers participate in the development of any new technologies to ensure adoption of the new system. (C) 2001 Elsevier Science B.V. All rights reserved.