958 resultados para Suspended sediment transport
Resumo:
To provide an integrated perspective on mineral particle effects in salmonids, juvenile rainbow trout (Oncorhynchus mykiss) were exposed to daily mica particle pulses for 8 and 24 days. On day 8, increased immature erythrocyte proportions indicated a previous stress response. This response was absent on day 24, on which condition factor as well as plasma protein and aspartate aminotransferase activity decreased. The latter two related negatively to the hepato-somatic index, suggesting metabolic adaptations. The hepato-somatic index increased on days 8 and 24, while spleen-somatic index increased on day 24. No histopathological damage occurred in gills, liver, spleen, or kidney. However, splenic melano-macrophages increased on both days, and hyaline degenerations of kidney tubular cells were apparent on day 24. Overall, particle pulses affected rainbow trout more via turbidity rather than by physical damage. We conclude that (i) rainbow trout may adapt to sediment pulses as early as 8 days of exposure and (ii) particle pulses over 24 days can cause structural and metabolic changes in rainbow trout, even when gill damage is absent and apical effects on condition are moderate.
Resumo:
Modern mixed alluvial-bedrock channels in mountainous areas provide natural laboratories for understanding the time scales at which coarse-grained material has been entrained and transported from their sources to the adjacent sedimentary sink, where these deposits are preserved as conglomerates. This article assesses the shear stress conditions needed for the entrainment of the coarse-bed particles in the Glogn River that drains the 400 km2 Val Lumnezia basin, eastern Swiss Alps. In addition, quantitative data are presented on sediment transport patterns in this stream. The longitudinal stream profile of this river is characterized by three ca 500 m long knickzones where channel gradients range from 0·02 to 0·2 m m−1, and where the valley bottom confined into a <10 m wide gorge. Downstream of these knickzones, the stream is flat with gradients <0·01 m m−1 and widths ≥30 m. Measurements of the grain-size distribution along the trunk stream yield a mean D84 value of ca 270 mm, whereas the mean D50 is ca 100 mm. The consequences of the channel morphology and the grain-size distribution for the time scales of sediment transport were explored by using a one-dimensional step-backwater hydraulic model (Hydrologic Engineering Centre – River Analysis System). The results reveal that, along the entire trunk stream, a two to 10 year return period flood event is capable of mobilizing both the D50 and D84 fractions where the Shields stress exceeds the critical Shields stress for the initiation of particle motion. These return periods, however, varied substantially depending on the channel geometry and the pebble/boulder size distribution of the supplied material. Accordingly, the stream exhibits a highly dynamic boulder cover behaviour. It is likely that these time scales might also have been at work when coarse-grained conglomerates were constructed in the geological past.
Resumo:
We examine variations in the ice-rafted sources for sediments in the Iceland/East Greenland offshore marine archives by utilizing a sediment unmixing model and link the results to a coupled iceberg-ocean model. Surface samples from around Iceland and along the E/NE Greenland shelf are used to define potential sediment sources, and these are examined within the context of the down-core variations in mineralogy in the <2 mm sediment fraction from a transect of cores across Denmark Strait. A sediment unmixing model is used to estimate the fraction of sediment <2 mm off NW and N Iceland exported across Denmark Strait; this averaged between 10 and 20%. Both the sediment unmixing model and the coupled iceberg-ocean model are consistent in finding that the fraction of "far-travelled" sediments in the Denmark Strait environs is overwhelmingly of local, mid-East Greenland, provenance, and therefore with a significant cross-channel component to their travel. The Holocene record of ice-rafted sediments denotes a three-part division of the Holocene in terms of iceberg sediment transport with a notable increase in the process starting ca 4000 cal yr BP. This latter increase may represent the re-advance during the Neoglacial period of land-terminating glaciers on the Geikie Plateau to become marine-terminating. The contrast in spectral signals between these cores and the 1500-yr cycle at VM28-14, just south of the Denmark Strait, combined with the coupled iceberg-model results, leads us to speculate that the signal at VM28-14 reflects pulses in overflow waters, rather than an ice-rafted signal.
Resumo:
We investigated the effect of suspended sediments on the vital rates of the copepods Calanus finmarchicus, Pseudocalanus sp. and Metridia longa in a Greenland sub-Arctic fjord. The fjord had a gradient of suspended particulate matter (SPM) with high concentrations (>50 mg/L) in the inner fjord due to glacial melt water runoff. Laboratory experiments showed that when feeding on the diatom Thalassiosira weissflogii specific ingestion rates were low at high concentrations of suspended sediment for C. finmarchicus (>20 mg/L) and Pseudocalanus sp. (>50 mg/L), while no effect was found for M. longa. For C. finmarchicus, a relatively constant fecal pellet production (FPP) and fecal pellet volume suggested ingestion of sediment, which probably led to reduction in egg production rates (EPRs) at high sediment concentrations. For Pseudocalanus sp., FPP decreased with increasing sediment concentrations, while no effect was observed on EPR. No significant difference was observed in FPP for M. longa feeding on the diatom T. weissflogii compared to the ciliate Strombidium sulcatum. The study shows that high sediment concentrations influence the capability of carbon turnover in C. finmarchicus and Pseudocalanus sp., while M. longa appears to be more tolerant to high sediment loads. Therefore, high concentrations of SPM could potentially influence the species composition of glacially influenced fjords.
Resumo:
One particularly complex phenomenon is the episodic, tidally driven variation of navigable depth level as a result of fluid mud settlement. This paper presents results from dynamic cone penetration testing with pore pressure measurement (CPTU) as a nonacoustical, direct device to support surveying and management of these areas. The new technique is modular and uses a disk configuration for fluid mud detection. Both disk resistance and pore pressure measurements accurately identify suspended matter concentrations of 90 g/L or more, and the transition from fluid mud to consolidating mud once concentrations exceed 150 g/L. Hence, the procedure attests the potential for rapid, reliable assessment of a fluid mud layer and concurrent characterization of the underlying consolidated sediment by monitoring the pore pressure and strength changes during penetration.