947 resultados para Surfactant flooding
Resumo:
The middle reach of the Yangtze River, customarily called the Jingjiang River, together with its diversion channels and Dongting Lake, form a large complicated drainage system. In the last five decades, significant geomorphological changes have occurred in the drainage system, including the shrinkage of diversion channels, contraction of Dongting Lake, changes in the rating curve at the Luoshan station, and cutoffs of the lower Jingjiang River. These changes are believed to be the cause of the occurrence of abnormal floods in the Jingjiang River. Qualitative analyses suggest that the first three factors aggravate the flood situation in the lower Jingjiang River, while the last factor seems beneficial for flood prevention. To quantitatively evaluate these conclusions, a finite-volume numerical model was constructed. A series of numerical simulations were carried out to test the individual and combined effects of the aforementioned four factors, and these simulations showed that high flood stages in the Jingjiang River clearly are related to the geomorphological changes.
Resumo:
Based on the scaling criteria of polymer flooding reservoir obtained in our previous work in which the gravity and capillary forces, compressibility, non-Newtonian behavior, absorption, dispersion, and diffusion are considered, eight partial similarity models are designed. A new numerical approach of sensitivity analysis is suggested to quantify the dominance degree of relaxed dimensionless parameters for partial similarity model. The sensitivity factor quantifying the dominance degree of relaxed dimensionless parameter is defined. By solving the dimensionless governing equations including all dimensionless parameters, the sensitivity factor of each relaxed dimensionless parameter is calculated for each partial similarity model; thus, the dominance degree of the relaxed one is quantitatively determined. Based on the sensitivity analysis, the effect coefficient of partial similarity model is defined as the summation of product of sensitivity factor of relaxed dimensionless parameter and its relative relaxation quantity. The effect coefficient is used as a criterion to evaluate each partial similarity model. Then the partial similarity model with the smallest effect coefficient can be singled out to approximate to the prototype. Results show that the precision of partial similarity model is not only determined by the number of satisfied dimensionless parameters but also the relative relaxation quantity of the relaxed ones.
Resumo:
A set of scaling criteria of a polymer flooding reservoir is derived from the governing equations, which involve gravity and capillary force, compressibility of water, oil, and rock, non-Newtonian behavior of the polymer solution, absorption, dispersion, and diffusion, etc. A numerical approach to quantify the dominance degree of each dimensionless parameter is proposed. With this approach, the sensitivity factor of each dimensionless parameter is evaluated. The results show that in polymer flooding, the order of the sensitivity factor ranges from 10(-5) to 10(0) and the dominant dimensionless parameters are generally the ratio of the oil permeability under the condition of the irreducible water saturation to water permeability under the condition of residual oil saturation, density, and viscosity ratios between water and oil, the reduced initial oleic phase saturation and the shear rate exponent of the polymer solution. It is also revealed that the dominant dimensionless parameters may be different from case to case. The effect of some physical variables, such as oil viscosity, injection rate, and permeability, on the dominance degree of the dimensionless parameters is analyzed and the dominant ones are determined for different cases.
Resumo:
The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.
Resumo:
The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.
Resumo:
Objective: Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. Methods: The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4-7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. Results: The nebulization system produced relatively large amounts of aerosol ranging between 0.3 +/- 0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0 +/- 0.1 ml/min for distilled water (H(2)Od) at 6 bar, with MMADs between 2.61 +/- 0.1 mu m for PFD at 7 bar and 10.18 +/- 0.4 mu m for FC-75 at 6 bar. The deposition study showed that for surfactant and H(2)Od aerosols, the highest percentage of the aerosolized mass (similar to 65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH(2)O only increased total airway pressure by 1.59 cmH(2)O at the highest driving pressure (7 bar). Conclusion: This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.
Resumo:
After an unusually strong and persistent pattern of atmospheric circulation over the United State[s] in Fall 1985, it became quite changeable (although high amplitude anomalies still prevailed). Following a fall that was cold in the West and warm in the East with heavy precipitation, a high pressure ridge set in over the West during December, with generally light precipitation over most of the country. Throughout the winter, the central North Pacific was very active, with large negative atmospheric pressure anomalies centered at about 45°N, l60°W. This activity may have been encouraged by an enhanced meridional eastern North Pacific sea surface temperature (SST) gradient, with positive SST anomalies in the subtropics and negative anomalies in midlatitudes. However, in January, the western high pressure ridge remained strong and temperatures were remarkably warm, increasing the threat of drought in California after the two previous dry winters. However, in February, storms from a greatly expanded and southerly displaced Aleutian Low broke into the West Coast. An unusual siege from February 11 to February 20 flooded central and northern California, with very heavy precipitation and record to near-record runoff. Upwards of 50 percent of annual average precipitation fell on locations from the upper San Joaquin to the Feather River drainage basins, and the largest flow since observations began in the early 1900's was recorded on the Sacramento River at Sacramento. The atmospheric pattern that was responsible for this remarkable stormy spell developed when the western high pressure retrograded to the northwest into the Aleutians, accompanied by the strengthened and southerly extended storm tract that moved into California. Although exact details vary from case to case, this episode displayed meteorological conditions similar to those in several other historical California winter flood events. These included a long duration of very strong westerly to southwesterly winds over a long subtropical fetch into California. Much of the precipitation during this series of storms was orographically induced by the moisture laden flow rising over the Sierra ranges. Due to the warm air mass, snow levels were relatively high (about 7500 feet) during the heaviest precipitation, resulting in copious runoff.