995 resultados para Surface Reflectance
Resumo:
Attempts to place Palaeolithic finds within a precise climatic framework are complicated by both uncertainty over the radiocarbon calibration beyond about 21,500 14C years bp (Reimer et al., 2004) and the absence of a master calendar chronology for climate events from reference archives such as Greenland ice cores or speleothems (Svensson et al., 2006, doi:10.1016/j.quascirev.2006.08.003). Here we present an alternative approach, in which 14C dates of interest are mapped directly onto the palaeoclimate record of the Cariaco Basin by means of its 14C series (Hughen et al., 2004, doi:10.1126/science.1090300), circumventing calendar age model and correlation uncertainties, and placing dated events in the millennial-scale climate context of the last glacial period. This is applied to different sets of dates from levels with Mousterian artefacts, presumably produced by late Neanderthals, from Gorham's Cave in Gibraltar: first, generally accepted estimates of about 32,000 14C years bp for the uppermost Mousterian levels (Pettitt and Bailey, 2000; Bronk Ramsey et al., 2002, doi:10.1111/1475-4754.00040); second, a possible extended Middle Palaeolithic occupation until about 28,000 14C years bp (Finlayson et al., 2006, doi:10.1038/nature05195); and third, more contentious evidence for persistence until about 24,000 14C years bp (Finlayson et al., 2006, doi:10.1038/nature05195). This study shows that the three sets translate to different scenarios on the role of climate in Neanderthal extinction. The first two correspond to intervals of general climatic instability between stadials and interstadials that characterized most of the Middle Pleniglacial and are not coeval with Heinrich Events. In contrast, if accepted, the youngest date indicates that late Neanderthals may have persisted up to the onset of a major environmental shift, which included an expansion in global ice volume and an increased latitudinal temperature gradient. More generally, our radiocarbon climatostratigraphic approach can be applied to any 'snapshot' date from discontinuous records in a variety of deposits and can become a powerful tool in evaluating the climatic signature of critical intervals in Late Pleistocene human evolution.
Resumo:
Precipitation has a larger variability than temperature in tropical monsoon regions, thus it is an important climate variable. However, reconstructions of long-term rainfall histories are scarce because of the lack of reliable proxies. Here we document that iron oxide minerals, specifically the ratio of hematite to goethite (Hm/Gt), is a reasonable precipitation proxy. Using diffuse reflectance spectrophotometry, we measured samples from Ocean Drilling Program (ODP) 1143 drilling site (9°21.72'N, 113°17.11'E, 2777 m water depth) for hematite and goethite, whose formation processes are favored by opposing climate conditions. In order to determine the content of hematite and goethite we produced a set of calibration samples by removing the iron oxides to generate the natural matrix to which hematite and goethite in known percentages were added. From these calibration samples we developed a transfer function for determining hematite and goethite concentration from a sample's spectral reflectance. Applying this method to ODP 1143 sediments (top 34 m of a 510 m core with sampling interval of 10 cm) we were able to reconstruct a continuous precipitation history for SE Asia of the past 600 kyr using the Hm/Gt ratio as a proxy of the precipitation variability of Asian monsoon. The reliability of this Hm/Gt proxy is corroborated by its consistency with the stalagmite delta18O data from South China. Comparing long-term Hm/Gt records with the surface temperature gradient of equatorial Pacific Ocean, we found that monsoon precipitation and El Niño are correlated for the last 600 kyr. The development of El Niño-like conditions decreased SE Asia precipitation, whereas precipitation increases in response to La Niña intensification
Resumo:
The relationship between phytoplankton assemblages and the associated optical properties of the water body is important for the further development of algorithms for large-scale remote sensing of phytoplankton biomass and the identification of phytoplankton functional types (PFTs), which are often representative for different biogeochemical export scenarios. Optical in-situ measurements aid in the identification of phytoplankton groups with differing pigment compositions and are widely used to validate remote sensing data. In this study we present results from an interdisciplinary cruise aboard the RV Polarstern along a north-to-south transect in the eastern Atlantic Ocean in November 2008. Phytoplankton community composition was identified using a broad set of in-situ measurements. Water samples from the surface and the depth of maximum chlorophyll concentration were analyzed by high performance liquid chromatography (HPLC), flow cytometry, spectrophotometry and microscopy. Simultaneously, the above- and underwater light field was measured by a set of high spectral resolution (hyperspectral) radiometers. An unsupervised cluster algorithm applied to the measured parameters allowed us to define bio-optical provinces, which we compared to ecological provinces proposed elsewhere in the literature. As could be expected, picophytoplankton was responsible for most of the variability of PFTs in the eastern Atlantic Ocean. Our bio-optical clusters agreed well with established provinces and thus can be used to classify areas of similar biogeography. This method has the potential to become an automated approach where satellite data could be used to identify shifting boundaries of established ecological provinces or to track exceptions from the rule to improve our understanding of the biogeochemical cycles in the ocean.
Resumo:
Fourier transform infrared (FTIR) spectroscopy was applied to determine the type of surface treatment and dose used on cork stoppers and to predict the friction between stopper and bottleneck. Agglomerated cork stoppers were finished with two different doses and using two surface treatments: P (paraffin and silicone), 15 and 25 mg/stopper, and S (only silicone), 10 and 15 mg/stopper. FTIR spectra were recorded at five points for each stopper by attenuated total reflectance (ATR). Absorbances at 1,010, 2,916, and 2,963 cm -1 were obtained in each spectrum. Discriminant analysis techniques allowed the treatment, and dose applied to each stopper to be identified from the absorbance values. 91.2% success rates were obtained from individual values and 96.0% from the mean values of each stopper. Spectrometric data also allowed treatment homogeneity to be determined on the stopper surface, and a multiple regression model was used to predict the friction index (If = Fe/Fc) (R 2 = 0.93)
Resumo:
Si(100) and Ge(100) substrates essential for subsequent III-V integration were studied in the hydrogen ambient of a metalorganic vapor phase epitaxy reactor. Reflectance anisotropy spectroscopy (RAS) enabled us to distinguish characteristic configurations of vicinal Si(100) in situ: covered with oxide, cleaned by thermal removing in H2, and terminated with monohydrides when cooling in H2 ambient. RAS measurements during cooling in H2 ambient after the oxide removal process revealed a transition from the clean to the monohydride terminated Si(100) surface dependent on process temperature. For vicinal Ge(100) we observed a characteristic RA spectrum after annealing and cooling in H2 ambient. According to results from X-ray photo electron spectroscopy and Fourier-transform infrared spectroscopy the spectrum corresponds to the monohydride terminated Ge(100) surface.
Resumo:
Uniquely in the Southern Hemisphere the New Zealand micro-continent spans the interface between a subtropical gyre and the Subantarctic Circumpolar Current. Its 20° latitudinal extent includes a complex of submerged plateaux, ridges, saddles and basins which, in the present interglacial, are partial barriers to circulation and steer the Subtropical (STF) and Subantarctic (SAF) fronts. This configuration offers a singular opportunity to assess the influence of bottom topography on oceanic circulation through Pleistocene glacial - interglacial (G/I) cycles, its effect on the location and strength of the fronts, and its ability to generate significant differences in mixed layer thermal history over short distances. For this study we use new planktic foraminiferal based sea-surface temperature (SST) estimates spanning the past 1 million years from a latitudinal transect of four deep ocean drilling sites. We conclude that: 1. the effect of the New Zealand landmass was to deflect the water masses south around the bathymetric impediments; 2. the effect of a shallow submerged ridge on the down-current side (Chatham Rise), was to dynamically trap the STF along its crest, in stark contrast to the usual glacial-interglacial (G-I) meridional migration that occurs in the open ocean; 3. the effect of more deeply submerged, downstream plateaux (Campbell, Bounty) was to dynamically trap the SAF along its steep southeastern margin; 4. the effects of saddles across the submarine plateaux was to facilitate the development of jets of subtropical and subantarctic surface water through the fronts, forming localized downstream gyres or eddies during different phases in the G-I climate cycles; 5. the deep Pukaki Saddle across the Campbell-Bounty Plateaux guided a branch of the SAF to flow northwards during each glacial, to form a strong gyre of circumpolar surface water in the Bounty Trough, especially during the mid-Pleistocene Climate Transition (MIS 22-16) when exceptionally high SST gradients existed across the STF; 6. the shallower Mernoo Saddle, at the western end of the Chatham Rise, provided a conduit for subtropical water to jet southwards across the STF in the warmest interglacial peaks (MIS 11, 5.5) and for subantarctic water to flow northwards during glacials; 7. although subtropical or subantarctic drivers can prevail at a particular phase of a G-I cycles, it appears that the Antarctic Circumpolar Current is the main influence on the regional hydrography. Thus complex submarine topography can affect distinct differences in the climate records over short distances with implications for using such records in interpreting global or regional trends. Conversely, the local topography can amplify the paleoclimate record in different ways in different places, thus enhancing its value for the study of more minor paleoceanographic influences that elsewhere are more difficult to detect. Such sites include DSDP 594, which like some other Southern Ocean sites, has the typical late Pleistocene asymmetrical saw-tooth G-I climate pattern transformed to a gap-tooth pattern of quasi-symmetrical interglacial spikes that interrupt extended periods of minimum glacial temperatures.
Resumo:
The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.
Distribution of melamine in polyester-melamine surface coatings cured under nonisothermal conditions
Resumo:
The influence of experimental cure parameters on the diffusion of reactive species in polyester-melamine thermoset coatings during curing has been investigated with X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared. The diffusion of melamine plays a vital role in the curing process and, therefore, in the ultimate properties of coatings. At a low (
Resumo:
Among the Solar System’s bodies, Moon, Mercury and Mars are at present, or have been in the recent years, object of space missions aimed, among other topics, also at improving our knowledge about surface composition. Between the techniques to detect planet’s mineralogical composition, both from remote and close range platforms, visible and near-infrared reflectance (VNIR) spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine or pyroxene (Burns, 1993). Thanks to the improvements in the spectrometers onboard the recent missions, a more detailed interpretation of the planetary surfaces can now be delineated. However, quantitative interpretation of planetary surface mineralogy could not always be a simple task. In fact, several factors such as the mineral chemistry, the presence of different minerals that absorb in a narrow spectral range, the regolith with a variable particle size range, the space weathering, the atmosphere composition etc., act in unpredictable ways on the reflectance spectra on a planetary surface (Serventi et al., 2014). One method for the interpretation of reflectance spectra of unknown materials involves the study of a number of spectra acquired in the laboratory under different conditions, such as different mineral abundances or different particle sizes, in order to derive empirical trends. This is the methodology that has been followed in this PhD thesis: the single factors previously listed have been analyzed, creating, in the laboratory, a set of terrestrial analogues with well-defined composition and size. The aim of this work is to provide new tools and criteria to improve the knowledge of the composition of planetary surfaces. In particular, mixtures composed with different content and chemistry of plagioclase and mafic minerals have been spectroscopically analyzed at different particle sizes and with different mineral relative percentages. The reflectance spectra of each mixture have been analyzed both qualitatively (using the software ORIGIN®) and quantitatively applying the Modified Gaussian Model (MGM, Sunshine et al., 1990) algorithm. In particular, the spectral parameter variations of each absorption band have been evaluated versus the volumetric FeO% content in the PL phase and versus the PL modal abundance. This delineated calibration curves of composition vs. spectral parameters and allow implementation of spectral libraries. Furthermore, the trends derived from terrestrial analogues here analyzed and from analogues in the literature have been applied for the interpretation of hyperspectral images of both plagioclase-rich (Moon) and plagioclase-poor (Mars) bodies.
Resumo:
It is well known that even slight changes in nonuniform illumination lead to a large image variability and are crucial for many visual tasks. This paper presents a new ICA related probabilistic model where the number of sources exceeds the number of sensors to perform an image segmentation and illumination removal, simultaneously. We model illumination and reflectance in log space by a generalized autoregressive process and Hidden Gaussian Markov random field, respectively. The model ability to deal with segmentation of illuminated images is compared with a Canny edge detector and homomorphic filtering. We apply the model to two problems: synthetic image segmentation and sea surface pollution detection from intensity images.
Resumo:
The surfaces of iron-containing sulphide minerals were oxidised by a range of inorganic oxidants, and the resultant surface alteration products studied using various spectroscopic techniques. The characterisation of surface oxidation is relevant to the alteration of ores in nature and their behaviour during flotation and leaching, of importance to the metallurgical industry. The sulphides investigated included pyrite (FeS2), hexagonal pyrrhotine (Fe9S10), monoclinic pyrrhotine (Fe7Se), violarite (FeNi2S4), pentlandite ((FeiNi)9Se), chalcopyrite (CuFeS2) and arsenopyrite (FeAsS). The surfaces were oxidised by various methods including acid (sulphuric), alkali (ammonium hydroxide), hydrogen peroxide, steam, electrochemical and air/oxygen (in a low-temperature (150ºC) furnace), The surfaces were examined using surface sensitive chemical spectroscopic methods including x-ray photoelectron spectroscopy (ms), Auger electron spectroscopy (LES) and conversion electron Mössbauer spectroscopy (CEKS). Physical characterisation of the surfaces was undertaken using scanning electron microscopy (SM), spectral reflectance measurements and optical microscopy. Bulk characterisation of the sulphide minerals was undertaken using x-ray diffraction and electron microprobe techniques. Observed phases suggested to form in most of the sulphide surfaces include Fe204, Fe1-x0, Fe202, Fe00H, Fe(OH)3, with iron II & III oxy-sulphates. The iron sulphides show variable extents of oxidation, indicating pyrite to be the most stable. Violarite shows stability to oxidation, suggested to result from both its stable spinel crystal structure, and from the rapid formation of sulphur at the surface protecting the sub-surface from further oxidation. The phenomenon of sub-surface enrichment (in metals), forming secondary sulphides, is exhibited by pentlandite and chalcopyrite, forming violarite and copper sulphides respectively. The consequences of this enrichment with regard to processing and leaching are discussed. Arsenopyrite, often a hindrance in ore processing, exhibits the formation of arsenic compounds at the surface, the dissolution of which is discussed in view of the possible environmental hazard caused by the local pollution of water systems. The results obtained allow a characterisation of the sulphides in terms of their relative stability to oxidation, and an order of stability of the sulphide surfaces is proposed. Models were constructed to explain the chemical compositions of the surfaces, and the inter-relationships between the phases determined at the surface and in the sub-surface. These were compared to the thermo-chemically predicted phases shown in Eh/pH and partial pressure diagrams! The results are discussed, both in terms of the mineralogy and geochemistry of natural ores, and the implications for extraction and processing of these ore minerals.
Resumo:
Banana discs of 1 cm thickness were immersed into different antioxidant solutions to slow down potentially disturbing discoloration during drying. Samples were randomly split into 8 groups according to the 2^p experimental design. Two antioxidant solutions with 1.66% and 4.59% ascorbic acid, two levels of drying temperature with 50°C and 80°C, two levels of drying time with 6h and 8h were used or adjusted. Laser diodes of seven wavelengths (532, 635, 650, 780, 808, 850 and 1064 nm) were selected to illuminate the surface and light penetration pattern was evaluated on the basis of radial profiles. Profiles acquired at three wavelengths (532, 635 and 650 nm) were found to respond sensitively to adjusted parameters. As a result of drying, intensity decay was observed to move closer to incident point. Significant effect (p<0.01) of temperature, drying time and their interaction was found on extracted descriptive attributes of intensity profiles: full width at half maximum (FWHM), distance of inflection point (DIP) and slope of logarithmic decay (SLD). Beyond their presence, antioxidant concentration was neutral factor without significant contribution to the model. Results were in agreement with reference spectroscopic measurements, especially with NDVI index. Promising results suggest that evaluated method might be suitable for monitoring purposes during drying of fruits.
Resumo:
The composition and abundance of algal pigments provide information on phytoplankton community characteristics such as photoacclimation, overall biomass and taxonomic composition. In particular, pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by high-performance liquid chromatography (HPLC) techniques applied to filtered water samples. This method, as well as other laboratory analyses, is time consuming and therefore limits the number of samples that can be processed in a given time. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an empirical orthogonal function (EOF) analysis to remote-sensing reflectance data derived from ship-based hyperspectral underwater radiometry and from multispectral satellite data (using the Medium Resolution Imaging Spectrometer - MERIS - Polymer product developed by Steinmetz et al., 2011, doi:10.1364/OE.19.009783) measured in the Atlantic Ocean. Subsequently we developed multiple linear regression models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multispectral resolution is chosen (i.e., eight bands, similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. As a demonstration of the utility of the approach, the fitted model based on satellite reflectance data as input was applied to 1 month of MERIS Polymer data to predict the concentration of those pigment groups for the whole eastern tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., < 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photophysiology.
Resumo:
We present high-resolution paleoceanographic records of surface and deep water conditions within the northern Red Sea covering the last glacial maximum and termination I using alkenone paleothermometry, stable oxygen isotopes, and sediment compositional data. Paleoceanographic records in the restricted desert-surrounded northern Red Sea are strongly affected by the stepwise sea level rise and appear to record and amplify well-known millennial-scale climate events from the North Atlantic realm. During the last glacial maximum (LGM), sea surface temperatures were about 4°C cooler than the late Holocene. Pronounced coolings associated with Heinrich event 1 (~2°C below the LGM level) and the Younger Dryas imply strong atmospheric teleconnections to the North Atlantic. Owing to the restricted exchange with the Indian Ocean, Red Sea salinity is particularly sensitive to changes in global sea level. Paleosalinities exceeded 50 psu during the LGM. A pronounced freshening of the surface waters is associated with the meltwater peaks MWP1a and MWP1b owing to an increased surface-near inflow of "normal" saline water from the Indian Ocean. Vertical delta18O gradients are also increased during these phases, indicating stronger surface water stratification. The combined effect of deglacial changes in sea surface temperature and salinity on water column stratification initiated the formation of two sapropel layers, which were deposited under almost anoxic condition in a stagnant water body.
Resumo:
Ground-state diffuse reflectance, time resolved laser-induced luminescence, diffuse reflectance laser flash-photolysis transient absorption and chromatographic techniques were used to elucidate the photodegradation processes of pyrene adsorbed onto microcrystalline cellulose and silica. Ground-state diffuse reflectance showed that on both substrates low concentrations display absorption of pyrene monomers. At high concentrations spectral changes attributed to aggregate formation were observed. Laser induced fluorescence showed that pyrene onto microcrystalline cellulose mainly presents fluorescence from monomers, while for silica, excimer-like emission was observed from low surface loadings (greater than or equal to 0.5 mumol g(-1)). Transient absorption and photodegradation studies were performed at concentrations where mainly monomers exist. On silica, pyrene presents transient absorption from its radical cation. On microcrystalline cellulose both radical cation, radical anion and pyrene triplet-triplet absorption were detected. Irradiation followed by chromatographic analysis showed that pyrene decomposes on both substrates. For pyrene on microcrystalline cellulose 1-hydroxypyrene was the main identified photoproduct since in the absence of oxygen further oxidation of 1-hydroxypyrene was very slow. For pyrene on silica photodegradation was very efficient. Almost no 1-hydroxypyrene was detected since in the presence of oxygen it is quickly oxidized to other photooxidation products. On both substrates, pyrene radical cation is the intermediate leading to photoproducts and oxygen it is not involved in its formation.