999 resultados para Surface Brightness Galaxies
Resumo:
We have studied the radial structure of the stellar mass surface density (μ∗) and stellar population age as a function of the total stellar mass and morphology for a sample of 107 galaxies from the CALIFA survey. We applied the fossil record method based on spectral synthesis techniques to recover the star formation history (SFH), resolved in space and time, in spheroidal and disk dominated galaxies with masses from 10^9 to 10^12 M_⊙. We derived the half-mass radius, and we found that galaxies are on average 15% more compact in mass than in light. The ratio of half-mass radius to half-light radius (HLR) shows a dual dependence with galaxy stellar mass; it decreases with increasing mass for disk galaxies, but is almost constant in spheroidal galaxies. In terms of integrated versus spatially resolved properties, we find that the galaxy-averaged stellar population age, stellar extinction, and μ_∗ are well represented by their values at 1 HLR. Negative radial gradients of the stellar population ages are present in most of the galaxies, supporting an inside-out formation. The larger inner (≤1 HLR) age gradients occur in the most massive (10^11 M_⊙) disk galaxies that have the most prominent bulges; shallower age gradients are obtained in spheroids of similar mass. Disk and spheroidal galaxies show negative μ∗ gradients that steepen with stellar mass. In spheroidal galaxies, μ∗ saturates at a critical value (~7 × 10^2 M_⊙/pc^2 at 1 HLR) that is independent of the galaxy mass. Thus, all the massive spheroidal galaxies have similar local μ_∗ at the same distance (in HLR units) from the nucleus. The SFH of the regions beyond 1 HLR are well correlated with their local μ_∗, and follow the same relation as the galaxy-averaged age and μ_∗; this suggests that local stellar mass surface density preserves the SFH of disks. The SFH of bulges are, however, more fundamentally related to the total stellar mass, since the radial structure of the stellar age changes with galaxy mass even though all the spheroid dominated galaxies have similar radial structure in μ_∗. Thus, galaxy mass is a more fundamental property in spheroidal systems, while the local stellar mass surface density is more important in disks.
Resumo:
As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745–7300 Å) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1′ × 1′) covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an “ionization cone” are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first “ionization cone” of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 Å] and have very low excitation, log([OIII]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([OIII]λ5007/Hβ, [NII]λ6584/Hα, [SII]λ6717, 6731/Hα, [OI]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC 6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC 5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the “ionization cone” scenario, although ionization by pAGB stars cannot be ruled out. Further study of this object is needed to clarify the nature of its elongated gas structure.
Resumo:
The "main sequence of galaxies"—defined in terms of the total star formation rate ψ versus the total stellar mass M *—is a well-studied tight relation that has been observed at several wavelengths and at different redshifts. All earlier studies have derived this relation from integrated properties of galaxies. We recover the same relation from an analysis of spatially resolved properties, with integral field spectroscopic (IFS) observations of 306 galaxies from the CALIFA survey. We consider the SFR surface density in units of log(M_⊙ yr^−1 Kpc^−2) and the stellar mass surface density in units of log(M_⊙ Kpc^−2) in individual spaxels that probe spatial scales of 0.5–1.5 Kpc. This local relation exhibits a high degree of correlation with small scatter (σ = 0.23 dex), irrespective of the dominant ionization source of the host galaxy or its integrated stellar mass. We highlight (i) the integrated star formation main sequence formed by galaxies whose dominant ionization process is related to star formation, for which we find a slope of 0.81 ± 0.02; (ii) for the spatially resolved relation obtained with the spaxel analysis, we find a slope of 0.72 ± 0.04; and (iii) for the integrated main sequence, we also identified a sequence formed by galaxies that are dominated by an old stellar population, which we have called the retired galaxies sequence.
Resumo:
A recent all-object spectroscopic survey centred on the Fornax cluster of galaxies has discovered a population of subluminous and extremely compact members, called 'ultra-compact dwarf' (UCD) galaxies. In order to clarify the origin of these objects, we have used self-consistent numerical simulations to study the dynamical evolution a nucleated dwarf galaxy would undergo if orbiting the centre of the Fornax cluster and suffering from its strong tidal gravitational field. We find that the outer stellar components of a nucleated dwarf are removed by the strong tidal field of the cluster, whereas the nucleus manages to survive as a result of its initially compact nature. The developed naked nucleus is found to have physical properties (e. g. size and mass) similar to those observed for UCDs. We also find that although this formation process does not have a strong dependence on the initial total luminosity of the nucleated dwarf, it does depend on the radial density profile of the dark halo in the sense that UCDs are less likely to be formed from dwarfs embedded in dark matter haloes with central 'cuspy' density profiles. Our simulations also suggest that very massive and compact stellar systems can be rapidly and efficiently formed in the central regions of dwarfs through the merging of smaller star clusters. We provide some theoretical predictions on the total number and radial number density profile of UCDs in a cluster and their dependencies on cluster masses.
Resumo:
Vertical-external-cavity surface-emitting lasers (VECSELs) have proved to be versatile lasers which allow for various emission schemes which on the one hand include remarkably high-power multi-mode or single-frequency continuouswave operation, and on the other hand two-color as well as mode-locked emission. Particularly, the combination of semiconductor gain medium and external cavity provides a unique access to high-brightness output, a high beam quality and wavelength flexibility. Moreover, the exploitation of intra-cavity frequency conversion further extends the achievable radiation wavelength, spanning a spectral range from the UV to the THz. In this work, recent advances in the field of VECSELs are summarized and the demonstration of self-mode-locking (SML) VECSELs with sub-ps pulses is highlighted. Thereby, we present studies which were not only performed for a quantum-well-based VECSEL, but also for a quantum-dot VECSEL.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Five years of SMOS L-band brightness temperature data intercepting a large number of tropical cyclones (TCs) are analyzed. The storm-induced half-power radio-brightness contrast (ΔI) is defined as the difference between the brightness observed at a specific wind force and that for a smooth water surface with the same physical parameters. ΔI can be related to surface wind speed and has been estimated for ~ 300 TCs that intercept with SMOS measurements. ΔI, expressed in a common storm-centric coordinate system, shows that mean brightness contrast monotonically increases with increased storm intensity ranging from ~ 5 K for strong storms to ~ 24 K for the most intense Category 5 TCs. A remarkable feature of the 2D mean ΔI fields and their variability is that maxima are systematically found on the right quadrants of the storms in the storm-centered coordinate frame, consistent with the reported asymmetric structure of the wind and wave fields in hurricanes. These results highlight the strong potential of SMOS measurements to improve monitoring of TC intensification and evolution. An improved empirical geophysical model function (GMF) was derived using a large ensemble of co-located SMOS ΔI, aircraft and H*WIND (a multi-measurement analysis) surface wind speed data. The GMF reveals a quadratic relationship between ΔI and the surface wind speed at a height of 10 m (U10). ECMWF and NCEP analysis products and SMOS derived wind speed estimates are compared to a large ensemble of H*WIND 2D fields. This analysis confirms that the surface wind speed in TCs can effectively be retrieved from SMOS data with an RMS error on the order of 10 kt up to 100 kt. SMOS wind speed products above hurricane force (64 kt) are found to be more accurate than those derived from NWP analyses products that systematically underestimate the surface wind speed in these extreme conditions. Using co-located estimates of rain rate, we show that the L-band radio-brightness contrasts could be weakly affected by rain or ice-phase clouds and further work is required to refine the GMF in this context.
Resumo:
By virtue of its proximity and richness, the Virgo galaxy cluster is a perfect testing ground to expand our understanding of structure formation in the Universe. Here, we present a comprehensive dynamical catalogue based on 190 Virgo cluster galaxies (VCGs) in the "Spectroscopy and H-band Imaging of the Virgo cluster" (SHIVir) survey, including kinematics and dynamical masses. Spectroscopy collected over a multi-year campaign on 4-8m telescopes was joined with optical and near-infrared imaging to create a cosmologically-representative overview of parameter distributions and scaling relations describing galaxy evolution in a rich cluster environment. The use of long-slit spectroscopy has allowed the extraction and systematic analysis of resolved kinematic profiles: Halpha rotation curves for late-type galaxies (LTGs), and velocity dispersion profiles for early-type galaxies (ETGs). The latter are shown to span a wide range of profile shapes which correlate with structural, morphological, and photometric parameters. A study of the distributions of surface brightnesses and circular velocities for ETGs and LTGs considered separately show them all to be strongly bimodal, hinting at the existence of dynamically unstable modes where the baryon and dark matter fractions may be comparable within the inner regions of galaxies. Both our Tully-Fisher relation for LTGs and Fundamental Plane analysis for ETGs exhibit the smallest scatter when a velocity metric probing the galaxy at larger radii (where the baryonic fraction becomes sub-dominant) is used: rotational velocity measured in the outer disc at the 23.5 i-mag arcsec^{-2} level, and velocity dispersion measured within an aperture of 2 effective radii, respectively. Dynamical estimates for gas-poor and gas-rich VCGs are merged into a joint analysis of the stellar-to-total mass relation (STMR), stellar TFR, and Mass-Size relation. These relations are all found to contain strong bimodalities or dichotomies between the ETG and LTG samples, alluding to a "mixed scenario'' evolutionary sequence between morphological/dynamical classes that involves both quenching and dry mergers. The unmistakable differentiation between these two galaxy classes appears robust against different classification schemes, and supports the notion that they are driven by different evolutionary histories. Future observations using integral field spectroscopy and including lower-mass galaxies should solidify this hypothesis.
Resumo:
The microabrasion technique of enamel consists of selectively abrading the discolored areas or causing superficial structural changes in a selective way. In microabrasion technique, abrasive products associated with acids are used, and the evaluation of enamel roughness after this treatment, as well as surface polishing, is necessary. This in-vitro study evaluated the enamel roughness after microabrasion, followed by different polishing techniques. Roughness analyses were performed before microabrasion (L1), after microabrasion (L2), and after polishing (L3).Thus, 60 bovine incisive teeth divided into two groups were selected (n=30): G1- 37% phosphoric acid (37%) (Dentsply) and pumice; G2- hydrochloric acid (6.6%) associated with silicon carbide (Opalustre - Ultradent). Thereafter, the groups were divided into three sub-groups (n=10), according to the system of polishing: A - Fine and superfine granulation aluminum oxide discs (SofLex 3M); B - Diamond Paste (FGM) associated with felt discs (FGM); C - Silicone tips (Enhance - Dentsply). A PROC MIXED procedure was applied after data exploratory analysis, as well as the Tukey-Kramer test (5%). No statistical differences were found between G1 and G2 groups. L2 differed statistically from L1 and showed superior amounts of roughness. Differences in the amounts of post-polishing roughness for specific groups (1A, 2B, and 1C) arose, which demonstrated less roughness in L3 and differed statistically from L2 in the polishing system. All products increased enamel roughness, and the effectiveness of the polishing systems was dependent upon the abrasive used.
Resumo:
Ni(1-x)FexO nanoparticles have been obtained by the co-precipitation chemical route. X-ray diffraction analyses using Rietveld refinement have shown a slight decrease in the microstrain and mean particle size as a function of the Fe content. The zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves show superparamagnetic behavior at high temperatures and a low temperature peak (at T = 11 K), which is enhanced with increasing Fe concentration. Unusual behavior of the coercive field in the low temperature region and an exchange bias behavior were also observed. A decrease in the Fe concentration induces an increase in the exchange bias field. We argue that these behaviors can be linked with the strengthening of surface anisotropy caused by the incorporation of Fe ions.
Resumo:
Different surface treatment protocols of poly(methyl methacrylate) have been proposed to improve the adhesion of silicone-based resilient denture liners to poly(methyl methacrylate) surfaces. The purpose of this study was to evaluate the effect of different poly(methyl methacrylate) surface treatments on the adhesion of silicone-based resilient denture liners. Poly(methyl methacrylate) specimens were prepared and divided into 4 treatment groups: no treatment (control), methyl methacrylate for 180 seconds, acetone for 30 seconds, and ethyl acetate for 60 seconds. Poly(methyl methacrylate) disks (30.0 × 5.0 mm; n = 10) were evaluated regarding surface roughness and surface free energy. To evaluate tensile bond strength, the resilient material was applied between 2 treated poly(methyl methacrylate) bars (60.0 × 5.0 × 5.0 mm; n = 20 for each group) to form a 2-mm-thick layer. Data were analyzed by 1-way ANOVA and the Tukey honestly significant difference tests (α = .05). A Pearson correlation test verified the influence of surface properties on tensile bond strength. Failure type was assessed, and the poly(methyl methacrylate) surface treatment modifications were visualized with scanning electron microscopy. The surface roughness was increased (P < .05) by methyl methacrylate treatment. For the acetone and ethyl acetate groups, the surface free energy decreased (P < .05). The tensile bond strength was higher for the methyl methacrylate and ethyl acetate groups (P < .05). No correlation was found regarding surface properties and tensile bond strength. Specimens treated with acetone and methyl methacrylate presented a cleaner surface, whereas the ethyl acetate treatment produced a porous topography. The methyl methacrylate and ethyl acetate surface treatment protocols improved the adhesion of a silicone-based resilient denture liner to poly(methyl methacrylate).
Resumo:
Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99 % of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.
Resumo:
The use of screening techniques, such as an alternative light source (ALS), is important for finding biological evidence at a crime scene. The objective of this study was to evaluate whether biological fluid (blood, semen, saliva, and urine) deposited on different surfaces changes as a function of the age of the sample. Stains were illuminated with a Megamaxx™ ALS System and photographed with a Canon EOS Utility™ camera. Adobe Photoshop™ was utilized to prepare photographs for analysis, and then ImageJ™ was used to record the brightness values of pixels in the images. Data were submitted to analysis of variance using a generalized linear mixed model with two fixed effects (surface and fluid). Time was treated as a random effect (through repeated measures) with a first-order autoregressive covariance structure. Means of significant effects were compared by the Tukey test. The fluorescence of the analyzed biological material varied depending on the age of the sample. Fluorescence was lower when the samples were moist. Fluorescence remained constant when the sample was dry, up to the maximum period analyzed (60 days), independent of the substrate on which the fluid was deposited, showing the novelty of this study. Therefore, the forensic expert can detect biological fluids at the crime scene using an ALS even several days after a crime has occurred.
Resumo:
To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness.
Resumo:
The aim of this study was to develop a methodology using Raman hyperspectral imaging and chemometric methods for identification of pre- and post-blast explosive residues on banknote surfaces. The explosives studied were of military, commercial and propellant uses. After the acquisition of the hyperspectral imaging, independent component analysis (ICA) was applied to extract the pure spectra and the distribution of the corresponding image constituents. The performance of the methodology was evaluated by the explained variance and the lack of fit of the models, by comparing the ICA recovered spectra with the reference spectra using correlation coefficients and by the presence of rotational ambiguity in the ICA solutions. The methodology was applied to forensic samples to solve an automated teller machine explosion case. Independent component analysis proved to be a suitable method of resolving curves, achieving equivalent performance with the multivariate curve resolution with alternating least squares (MCR-ALS) method. At low concentrations, MCR-ALS presents some limitations, as it did not provide the correct solution. The detection limit of the methodology presented in this study was 50μgcm(-2).