954 resultados para Supervised training
Resumo:
Effectiveness of brief/minimal contact self-activation interventions that encourage participation in physical activity (PA) for chronic low back pain (CLBP >12 weeks) is unproven. The primary objective of this assessor-blinded randomized controlled trial was to investigate the difference between an individualized walking programme (WP), group exercise class (EC), and usual physiotherapy (UP, control) in mean change in functional disability at 6 months. A sample of 246 participants with CLBP aged 18 to 65 years (79 men and 167 women; mean age ± SD: 45.4 ± 11.4 years) were recruited from 5 outpatient physiotherapy departments in Dublin, Ireland. Consenting participants completed self-report measures of functional disability, pain, quality of life, psychosocial beliefs, and PA were randomly allocated to the WP (n = 82), EC (n = 83), or UP (n = 81) and followed up at 3 (81%; n = 200), 6 (80.1%; n = 197), and 12 months (76.4%; n = 188). Cost diaries were completed at all follow-ups. An intention-to-treat analysis using a mixed between-within repeated-measures analysis of covariance found significant improvements over time on the Oswestry Disability Index (Primary Outcome), the Numerical Rating Scale, Fear Avoidance-PA scale, and the EuroQol EQ-5D-3L Weighted Health Index (P < 0.05), but no significant between-group differences and small between-group effect sizes (WP: mean difference at 6 months, 6.89 Oswestry Disability Index points, 95% confidence interval [CI] -3.64 to -10.15; EC: -5.91, CI: -2.68 to -9.15; UP: -5.09, CI: -1.93 to -8.24). The WP had the lowest mean costs and the highest level of adherence. Supervised walking provides an effective alternative to current forms of CLBP management.
Resumo:
To assess the outcomes of cataract surgery performed by novice surgeons during training in a rural programme. Design: Retrospective study. Participants: Three hundred thirty-four patients operated by two trainees under supervision at rural Chinese county hospitals. Methods: Two trainees performed surgeries under supervision. Visual acuity, refraction and examinations were carried out 3 months postoperatively. Main Outcome Measures: Postoperative uncorrected visual acuity, pinhole visual acuity, causes of visual impairment (postoperative uncorrected visual acuity<6/18) Results: Among 518 operated patients, 426 (82.2%) could be contacted and 334 (64.4% of operated patients) completed the examinations. The mean age was 74.1±8.8 years and 62.9% were women. Postoperative uncorrected visual acuity was available in 372 eyes. Among them, uncorrected visual acuity was ≥6/18 in 278 eyes (74.7%) and <6/60 in 60 eyes (16.1%), and 323 eyes (86.8%) had pinhole visual acuity≥6/18 and 38 eyes (10.2%) had pinhole visual acuity<6/60. Main causes of visual impairment were uncorrected refractive error (63.9%) and comorbid eye disease (24.5%). Comorbid eye diseases associated with pinhole visual acuity<6/60 (n=23, 6.2%) included glaucoma, other optic nerve atrophy, vitreous haemorrhage and retinal detachment. Conclusions: The findings suggest that hands-on training remains safe and effective even when not implemented in centralized training centres. Further refinement of the training protocol, providing postoperative refractive services and more accurate preoperative intraocular lens calculations, can help optimize outcomes. © 2012 The Authors Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.
Resumo:
Supervised exercise training has been shown to improve walking capacity in several studies of patients with intermittent claudication. However, data on long-term outcome are quite limited. The aim of this prospective study was to evaluate long-term effects of supervised exercise training on walking capacity and quality of life in patients with intermittent claudication. Patients and methods: Sixty-seven consecutive patients with intermittent claudication who completed a supervised 12-week exercise training program were asked for follow up evaluation 39 +/- 20 months after program completion. Pain-free walking distance (PWD) and maximum walking distances (MWD) were assessed by treadmill test and several questionnaires. Results: Forty (60%) patients agreed to participate, 22 (33%) refused participation, and 5 (7%) died during follow-up. PWD and MWD significantly improved at completion of 12-weeks supervised exercise training as compared to baseline (PWD 114 +/- 100 vs. 235 +/- 248, p = 0.002; MWD 297 +/- 273 vs. 474 +/- 359, p = 0.001). Improvement of PWD and MWD could be maintained at follow up (197 +/- 254, p = 0.014; 390 +/- 324, p = 0.035, respectively) with non-smokers showing significantly better sustained PWD and MWD improvement as compared to baseline. Overall, walking capacity correlated with functional status of quality of life. Conclusions: Major findings of this investigation were that improvement in walking capacity is sustained after completion of supervised exercise training program with best results in patients who quitted or never smoked. Improved walking capacity is associated with increased functional status of quality of life.
Resumo:
The accuracy of a map is dependent on the reference dataset used in its construction. Classification analyses used in thematic mapping can, for example, be sensitive to a range of sampling and data quality concerns. With particular focus on the latter, the effects of reference data quality on land cover classifications from airborne thematic mapper data are explored. Variations in sampling intensity and effort are highlighted in a dataset that is widely used in mapping and modelling studies; these may need accounting for in analyses. The quality of the labelling in the reference dataset was also a key variable influencing mapping accuracy. Accuracy varied with the amount and nature of mislabelled training cases with the nature of the effects varying between classifiers. The largest impacts on accuracy occurred when mislabelling involved confusion between similar classes. Accuracy was also typically negatively related to the magnitude of mislabelled cases and the support vector machine (SVM), which has been claimed to be relatively insensitive to training data error, was the most sensitive of the set of classifiers investigated, with overall classification accuracy declining by 8% (significant at 95% level of confidence) with the use of a training set containing 20% mislabelled cases.
Resumo:
Many state of the art vision-based Simultaneous Localisation And Mapping (SLAM) and place recognition systems compute the salience of visual features in their environment. As computing salience can be problematic in radically changing environments new low resolution feature-less systems have been introduced, such as SeqSLAM, all of which consider the whole image. In this paper, we implement a supervised classifier system (UCS) to learn the salience of image regions for place recognition by feature-less systems. SeqSLAM only slightly benefits from the results of training, on the challenging real world Eynsham dataset, as it already appears to filter less useful regions of a panoramic image. However, when recognition is limited to specific image regions performance improves by more than an order of magnitude by utilising the learnt image region saliency. We then investigate whether the region salience generated from the Eynsham dataset generalizes to another car-based dataset using a perspective camera. The results suggest the general applicability of an image region salience mask for optimizing route-based navigation applications.
Resumo:
Background: Heart failure is a serious condition estimated to affect 1.5-2.0% of the Australian population with a point prevalence of approximately 1% in people aged 50-59 years, 10% in people aged 65 years or more and over 50% in people aged 85 years or over (National Heart Foundation of Australian and the Cardiac Society of Australia and New Zealand, 2006). Sleep disturbances are a common complaint of persons with heart failure. Disturbances of sleep can worsen heart failure symptoms, impair independence, reduce quality of life and lead to increased health care utilisation in patients with heart failure. Previous studies have identified exercise as a possible treatment for poor sleep in patients without cardiac disease however there is limited evidence of the effect of this form of treatment in heart failure. Aim: The primary objective of this study was to examine the effect of a supervised, hospital-based exercise training programme on subjective sleep quality in heart failure patients. Secondary objectives were to examine the association between changes in sleep quality and changes in depression, exercise performance and body mass index. Methods: The sample for the study was recruited from metropolitan and regional heart failure services across Brisbane, Queensland. Patients with a recent heart failure related hospital admission who met study inclusion criteria were recruited. Participants were screened by specialist heart failure exercise staff at each site to ensure exercise safety prior to study enrolment. Demographic data, medical history, medications, Pittsburgh Sleep Quality Index score, Geriatric Depression Score, exercise performance (six minute walk test), weight and height were collected at Baseline. Pittsburgh Sleep Quality Index score, Geriatric Depression Score, exercise performance and weight were repeated at 3 months. One hundred and six patients admitted to hospital with heart failure were randomly allocated to a 3-month disease-based management programme of education and self-management support including standard exercise advice (Control) or to the same disease management programme as the Control group with the addition of a tailored physical activity program (Intervention). The intervention consisted of 1 hour of aerobic and resistance exercise twice a week. Programs were designed and supervised by an exercise specialist. The main outcome measure was achievement of a clinically significant change (.3 points) in global Pittsburgh Sleep Quality score. Results: Intervention group participants reported significantly greater clinical improvement in global sleep quality than Control (p=0.016). These patients also exhibited significant improvements in component sleep disturbance (p=0.004), component sleep quality (p=0.015) and global sleep quality (p=0.032) after 3 months of supervised exercise intervention. Improvements in sleep quality correlated with improvements in depression (p<0.001) and six minute walk distance (p=0.04). When study results were examined categorically, with subjects classified as either "poor" or "good" sleepers, subjects in the Control group were significantly more likely to report "poor" sleep at 3 months (p=0.039) while Intervention participants were likely to report "good" sleep at this time (p=0.08). Conclusion: Three months of supervised, hospital based, aerobic and resistance exercise training improved subjective sleep quality in patients with heart failure. This is the first randomised controlled trial to examine the role of aerobic and resistance exercise training in the improvement of sleep quality for patients with this disease. While this study establishes exercise as a therapy for poor sleep quality, further research is needed to investigate the effect of exercise training on objective parameters of sleep in this population.
Resumo:
Background: Smoking and physical inactivity are major risk factors for heart disease. Linking strategies that promote improvements in fitness and assist quitting smoking has potential to address both these risk factors simultaneously. The objective of this study is to compare the effects of two exercise interventions (high intensity interval training (HIIT) and lifestyle physical activity) on smoking cessation in female smokers. Method/design: This study will use a randomised controlled trial design. Participants: Women aged 18–55 years who smoke ≥ 5 cigarettes/day, and want to quit smoking. Intervention: all participants will receive usual care for quitting smoking. Group 1 - will complete two gym-based supervised HIIT sessions/week and one home-based HIIT session/week. At each training session participants will be asked to complete four 4-min (4 × 4 min) intervals at approximately 90 % of maximum heart rate interspersed with 3- min recovery periods. Group 2 - participants will receive a resource pack and pedometer, and will be asked to use the 10,000 steps log book to record steps and other physical activities. The aim will be to increase daily steps to 10,000 steps/day. Analysis will be intention to treat and measures will include smoking cessation, withdrawal and cravings, fitness, physical activity, and well-being. Discussion: The study builds on previous research suggesting that exercise intensity may influence the efficacy of exercise as a smoking cessation intervention. The hypothesis is that HIIT will improve fitness and assist women to quit smoking.
Resumo:
In this thesis a manifold learning method is applied to the problem of WLAN positioning and automatic radio map creation. Due to the nature of WLAN signal strength measurements, a signal map created from raw measurements results in non-linear distance relations between measurement points. These signal strength vectors reside in a high-dimensioned coordinate system. With the help of the so called Isomap-algorithm the dimensionality of this map can be reduced, and thus more easily processed. By embedding position-labeled strategic key points, we can automatically adjust the mapping to match the surveyed environment. The environment is thus learned in a semi-supervised way; gathering training points and embedding them in a two-dimensional manifold gives us a rough mapping of the measured environment. After a calibration phase, where the labeled key points in the training data are used to associate coordinates in the manifold representation with geographical locations, we can perform positioning using the adjusted map. This can be achieved through a traditional supervised learning process, which in our case is a simple nearest neighbors matching of a sampled signal strength vector. We deployed this system in two locations in the Kumpula campus in Helsinki, Finland. Results indicate that positioning based on the learned radio map can achieve good accuracy, especially in hallways or other areas in the environment where the WLAN signal is constrained by obstacles such as walls.
Resumo:
In the design of practical web page classification systems one often encounters a situation in which the labeled training set is created by choosing some examples from each class; but, the class proportions in this set are not the same as those in the test distribution to which the classifier will be actually applied. The problem is made worse when the amount of training data is also small. In this paper we explore and adapt binary SVM methods that make use of unlabeled data from the test distribution, viz., Transductive SVMs (TSVMs) and expectation regularization/constraint (ER/EC) methods to deal with this situation. We empirically show that when the labeled training data is small, TSVM designed using the class ratio tuned by minimizing the loss on the labeled set yields the best performance; its performance is good even when the deviation between the class ratios of the labeled training set and the test set is quite large. When the labeled training data is sufficiently large, an unsupervised Gaussian mixture model can be used to get a very good estimate of the class ratio in the test set; also, when this estimate is used, both TSVM and EC/ER give their best possible performance, with TSVM coming out superior. The ideas in the paper can be easily extended to multi-class SVMs and MaxEnt models.
Resumo:
A visual pattern recognition network and its training algorithm are proposed. The network constructed of a one-layer morphology network and a two-layer modified Hamming net. This visual network can implement invariant pattern recognition with respect to image translation and size projection. After supervised learning takes place, the visual network extracts image features and classifies patterns much the same as living beings do. Moreover we set up its optoelectronic architecture for real-time pattern recognition. (C) 1996 Optical Society of America
Resumo:
In recent years, the performance of semi-supervised learning has been theoretically investigated. However, most of this theoretical development has focussed on binary classification problems. In this paper, we take it a step further by extending the work of Castelli and Cover [1] [2] to the multi-class paradigm. Particularly, we consider the key problem in semi-supervised learning of classifying an unseen instance x into one of K different classes, using a training dataset sampled from a mixture density distribution and composed of l labelled records and u unlabelled examples. Even under the assumption of identifiability of the mixture and having infinite unlabelled examples, labelled records are needed to determine the K decision regions. Therefore, in this paper, we first investigate the minimum number of labelled examples needed to accomplish that task. Then, we propose an optimal multi-class learning algorithm which is a generalisation of the optimal procedure proposed in the literature for binary problems. Finally, we make use of this generalisation to study the probability of error when the binary class constraint is relaxed.
Resumo:
We present a novel, implementation friendly and occlusion aware semi-supervised video segmentation algorithm using tree structured graphical models, which delivers pixel labels alongwith their uncertainty estimates. Our motivation to employ supervision is to tackle a task-specific segmentation problem where the semantic objects are pre-defined by the user. The video model we propose for this problem is based on a tree structured approximation of a patch based undirected mixture model, which includes a novel time-series and a soft label Random Forest classifier participating in a feedback mechanism. We demonstrate the efficacy of our model in cutting out foreground objects and multi-class segmentation problems in lengthy and complex road scene sequences. Our results have wide applicability, including harvesting labelled video data for training discriminative models, shape/pose/articulation learning and large scale statistical analysis to develop priors for video segmentation. © 2011 IEEE.
Resumo:
Computational models of learning typically train on labeled input patterns (supervised learning), unlabeled input patterns (unsupervised learning), or a combination of the two (semisupervised learning). In each case input patterns have a fixed number of features throughout training and testing. Human and machine learning contexts present additional opportunities for expanding incomplete knowledge from formal training, via self-directed learning that incorporates features not previously experienced. This article defines a new self-supervised learning paradigm to address these richer learning contexts, introducing a neural network called self-supervised ARTMAP. Self-supervised learning integrates knowledge from a teacher (labeled patterns with some features), knowledge from the environment (unlabeled patterns with more features), and knowledge from internal model activation (self-labeled patterns). Self-supervised ARTMAP learns about novel features from unlabeled patterns without destroying partial knowledge previously acquired from labeled patterns. A category selection function bases system predictions on known features, and distributed network activation scales unlabeled learning to prediction confidence. Slow distributed learning on unlabeled patterns focuses on novel features and confident predictions, defining classification boundaries that were ambiguous in the labeled patterns. Self-supervised ARTMAP improves test accuracy on illustrative lowdimensional problems and on high-dimensional benchmarks. Model code and benchmark data are available from: http://techlab.bu.edu/SSART/.
Resumo:
Training data for supervised learning neural networks can be clustered such that the input/output pairs in each cluster are redundant. Redundant training data can adversely affect training time. In this paper we apply two clustering algorithms, ART2 -A and the Generalized Equality Classifier, to identify training data clusters and thus reduce the training data and training time. The approach is demonstrated for a high dimensional nonlinear continuous time mapping. The demonstration shows six-fold decrease in training time at little or no loss of accuracy in the handling of evaluation data.
Resumo:
This article introduces a new neural network architecture, called ARTMAP, that autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of input patterns. During training trials, the ARTa module receives a stream {a^(p)} of input patterns, and ARTb receives a stream {b^(p)} of input patterns, where b^(p) is the correct prediction given a^(p). These ART modules are linked by an associative learning network and an internal controller that ensures autonomous system operation in real time. During test trials, the remaining patterns a^(p) are presented without b^(p), and their predictions at ARTb are compared with b^(p). Tested on a benchmark machine learning database in both on-line and off-line simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the database. It achieves these properties by using an internal controller that conjointly maximizes predictive generalization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis, using only local operations. This computation increases the vigilance parameter ρa of ARTa by the minimal amount needed to correct a predictive error at ARTb· Parameter ρa calibrates the minimum confidence that ARTa must have in a category, or hypothesis, activated by an input a^(p) in order for ARTa to accept that category, rather than search for a better one through an automatically controlled process of hypothesis testing. Parameter ρa is compared with the degree of match between a^(p) and the top-down learned expectation, or prototype, that is read-out subsequent to activation of an ARTa category. Search occurs if the degree of match is less than ρa. ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if they are similar to frequent events with different consequences. Between input trials ρa relaxes to a baseline vigilance pa When ρa is large, the system runs in a conservative mode, wherein predictions are made only if the system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP learning is self stabilizing, it can continue learning one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.