983 resultados para Superstrings and Ileterotic Strings
Resumo:
We complete the construction of the Neveu-Schwarz sector of heterotic string field theory begun in [9] by giving a closed-form expression for the action and gauge transformations. Just as the Wess-Zumino-Witten (WZW) action for open superstring field theory can be constructed from pure-gauge fields in bosonic open string field theory, our heterotic string field theory action is constructed from pure-gauge fields in bosonic closed string field theory. The construction involves a simple alternative form of the WZW action which is consistent with the algebraic structures of closed string field theory. © SISSA/ISAS 2004.
Resumo:
Using arguments based on BRST cohomology, the pure spinor formalism for the superstring in an AdS 5×S 5 background is proven to be BRST invariant and conformally invariant at the quantum level to all orders in perturbation theory. Cohomology arguments are also used to prove the existence of an infinite set of non-local BRST-invariant charges at the quantum level. © SISSA 2005.
Resumo:
Following suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted ĉ ≤ 3 N ≤ 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincaré covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action. © SISSA 2005.
Resumo:
The super-Poincaré covariant formalism for the superstring is used to compute massless four-point two-loop amplitudes in ten-dimensional superspace. The computations are much simpler than in the RNS formalism and include both external bosons and fermions. © SISSA 2006.
Resumo:
The massless 4-point one-loop amplitude computation in the pure spinor formalism is shown to agree with the computation in the RNS formalism. © SISSA 2006.
Resumo:
Nilpotency of the pure spinor BRST operator in a curved background implies superspace equations of motion for the background. By computing one-loop corrections to nilpotency for the heterotic sigma model, the Yang-Mills Chern-Simons corrections to the background are derived. © 2008 SISSA.
Resumo:
Using the results recently obtained for computing integrals over (non-minimal) pure spinor superspace, we compute the coefficient of the massless two-loop four-point amplitude from first principles. Contrasting with the mathematical difficulties in the RNS formalism where unknown normalizations of chiral determinant formulæ force the two-loop coefficient to be determined only indirectly through factorization, the computation in the pure spinor formalism can be smoothly carried out. © SISSA 2010.
Resumo:
The b ghost in the non-minimal pure spinor formalism is not a fundamental field. It is based on a complicated chain of operators and proving its nilpotency is nontrivial. Chandia proved this property in arXiv:1008.1778, but with an assumption on the nonminimal variables that is not valid in general. In this work, the b ghost is demonstrated to be nilpotent without this assumption. © 2013 SISSA, Trieste, Italy.
Resumo:
In this work, a particular BRST-exact class of deformations of the b ghost in the non-minimal pure spinor formalism is investigated and the impact of this construction in the N= 2 ĉ = 3 topological string algebra is analysed. As an example, a subclass of deformations is explicitly shown, where the U (1) current appears in a conventional form, involving only the ghost number currents. Furthermore, a c ghost like composite field is introduced, but with an unusual construction. © 2013 SISSA, Trieste, Italy.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)