66 resultados para Supercomputing
Resumo:
Large-scale massively parallel molecular dynamics (MD) simulations of the human class I major histo-compatibility complex (MHC) protein HLA-A*0201 bound to a decameric tumor-specific antigenic peptide GVY-DGREHTV were performed using a scalable MD code on high-performance computing platforms. Such computational capabilities put us in reach of simulations of various scales and complexities. The supercomputing resources available Large-scale massively parallel molecular dynamics (MD) simulations of the human class I major histocompatibility complex (MHC) protein HLA-A*0201 bound to a decameric tumor-specific antigenic peptide GVYDGREHTV were performed using a scalable MD code on high-performance computing platforms. Such computational capabilities put us in reach of simulations of various scales and complexities. The supercomputing resources available for this study allow us to compare directly differences in the behavior of very large molecular models; in this case, the entire extracellular portion of the peptide–MHC complex vs. the isolated peptide binding domain. Comparison of the results from the partial and the whole system simulations indicates that the peptide is less tightly bound in the partial system than in the whole system. From a detailed study of conformations, solvent-accessible surface area, the nature of the water network structure, and the binding energies, we conclude that, when considering the conformation of the α1–α2 domain, the α3 and β2m domains cannot be neglected. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1803–1813, 2004
Resumo:
Data envelopment analysis (DEA) is the most widely used methods for measuring the efficiency and productivity of decision-making units (DMUs). The need for huge computer resources in terms of memory and CPU time in DEA is inevitable for a large-scale data set, especially with negative measures. In recent years, wide ranges of studies have been conducted in the area of artificial neural network and DEA combined methods. In this study, a supervised feed-forward neural network is proposed to evaluate the efficiency and productivity of large-scale data sets with negative values in contrast to the corresponding DEA method. Results indicate that the proposed network has some computational advantages over the corresponding DEA models; therefore, it can be considered as a useful tool for measuring the efficiency of DMUs with (large-scale) negative data.
Resumo:
We advocate the Loop-of-stencil-reduce pattern as a means of simplifying the implementation of data-parallel programs on heterogeneous multi-core platforms. Loop-of-stencil-reduce is general enough to subsume map, reduce, map-reduce, stencil, stencil-reduce, and, crucially, their usage in a loop in both data-parallel and streaming applications, or a combination of both. The pattern makes it possible to deploy a single stencil computation kernel on different GPUs. We discuss the implementation of Loop-of-stencil-reduce in FastFlow, a framework for the implementation of applications based on the parallel patterns. Experiments are presented to illustrate the use of Loop-of-stencil-reduce in developing data-parallel kernels running on heterogeneous systems.
Resumo:
The last two decades have seen a proliferation of research frameworks that emphasise the importance of understanding adaptive processes that happen at different levels. We contribute to this growing body of literature by exploring how cultural (mal)adaptive dynamics relate to multilevel social-ecological processes occurring at different scales, where the lower levels combine into new units with new organizations, functions, and emergent properties or collective behaviors. After a brief review of the concept of “cultural adaptation” from the perspective of cultural evolutionary theory, the core of the paper is constructed around the exploration of multilevel processes occurring at the temporal, spatial, social, and political scales. We do so by using insights from cultural evolutionary theory and by examining small-scale societies as case studies. In each section, we discuss the importance of the selected scale for understanding cultural adaptation and then present an example that illustrates how multilevel processes in the selected scale help explain observed patterns in the cultural adaptive process. The last section of the paper discusses the potential of modeling and computer simulation for studying multilevel processes in cultural adaptation. We conclude by highlighting how elements from cultural evolutionary theory might enrich the multilevel process discussion in resilience theory.
Resumo:
Abstract: Medical image processing in general and brain image processing in particular are computationally intensive tasks. Luckily, their use can be liberalized by means of techniques such as GPU programming. In this article we study NiftyReg, a brain image processing library with a GPU implementation using CUDA, and analyse different possible ways of further optimising the existing codes. We will focus on fully using the memory hierarchy and on exploiting the computational power of the CPU. The ideas that lead us towards the different attempts to change and optimize the code will be shown as hypotheses, which we will then test empirically using the results obtained from running the application. Finally, for each set of related optimizations we will study the validity of the obtained results in terms of both performance and the accuracy of the resulting images.
Resumo:
Este Trabajo de Fin de Grado constituye el primero en una línea de Trabajos con un objetivo común: la creación de una aplicación o conjunto de aplicaciones que apoye a la administración de un cluster de supercomputación mediante una representación en tres dimensiones del mismo accesible desde un navegador. Esta aplicación deberá ser de fácil manejo para el personal que haga uso de ella, que recibirá información procedente de distintas fuentes sobre el estado de cada uno de los dispositivos del cluster. Concretamente, este primer Trabajo se centra en la representación gráfica del cluster mediante WebGL, el estándar para renderizado 3D en navegadores basado en OpenGL, tomando como modelo de desarrollo el SCBI (Centro de Supercomputación y Bioinnovación) de la Universidad de Málaga. Para ello, se apoyará en la creación de una herramienta con la que describir texualmente de forma intuitiva los elementos de una sala de supercomputadores y los datos asociados a los mismos. Esta descripción será modificable para adaptarse a las necesidades del administrador de los datos.