886 resultados para Sugar concentration
Resumo:
A review of the general chromatographic theory and of continuous chromatographic techniques has been carried out. Three methods of inversion of sucrose to glucose and fructose in beet molasses were explored. These methods were the inversion of sucrose using the enzyme invertase, by the use of hydrochloric acid and the use of the resin Amberlite IR118 in the H+ form. The preferred method on economic and purity considerations was by the use of the enzyme invertase. The continuous chromatographic separation of inverted beet molasses resulting in a fructose rich product and a product containing glucose and other non-sugars was carried out using a semi-continuous counter-current chromatographic refiner (SCCR6), consisting of ten 10.8cm x 75cm long stainless steel columns packed with a calcium charged 8% cross-linked polystyrene resin Zerolit SRC 14. Based on the literature this is the first time such a continuous separation has been attempted. It was found that the cations present in beet molasses displaced the calcium ions from the resin resulting in poor separation of the glucose and fructose. Three methods of maintaining the calcium form of the resin during the continuous operation of the equipment were established. Passing a solution of calcium nitrate through the purge column for half a switch period was found to be most effective as there was no contamination of the main fructose rich product and the product concentrations were increased by 50%. When a 53% total solids (53 Brix) molasses feedstock was used, the throughput was 34.13kg sugar solids per m3 of resin per hour. Product purities of 97% fructose in fructose rich (FRP) and 96% glucose in the glucose rich (GRP) products were obtained with product concentrations of 10.93 %w/w for the FRP and 10.07 %w/w for the GRP. The effects of flowrates, temperature and background sugar concentration on the distribution coefficients of fructose, glucose, betaine and an ionic component of beet molasses were evaluated and general relationships derived. The computer simulation of inverted beet molasses separations on an SCCR system has been carried out successfully.
Resumo:
Controlling the water content within a product has long been required in the chemical processing, agriculture, food storage, paper manufacturing, semiconductor, pharmaceutical and fuel industries. The limitations of water content measurement as an indicator of safety and quality are attributed to differences in the strength with which water associates with other components in the product. Water activity indicates how tightly water is "bound," structurally or chemically, in products. Water absorption introduces changes in the volume and refractive index of poly(methyl methacrylate) PMMA. Therefore for a grating made in PMMA based optical fiber, its wavelength is an indicator of water absorption and PMMA thus can be used as a water activity sensor. In this work we have investigated the performance of a PMMA based optical fiber grating as a water activity sensor in sugar solution, saline solution and Jet A-1 aviation fuel. Samples of sugar solution with sugar concentration from 0 to 8%, saline solution with concentration from 0 to 22%, and dried (10ppm), ambient (39ppm) and wet (68ppm) aviation fuels were used in experiments. The corresponding water activities are measured as 1.0 to 0.99 for sugar solution, 1.0 to 0.86 for saline solution, and 0.15, 0.57 and 1.0 for the aviation fuel samples. The water content in the measured samples ranges from 100% (pure water) to 10 ppm (dried aviation fuel). The PMMA based optical fiber grating exhibits good sensitivity and consistent response, and Bragg wavelength shifts as large as 3.4 nm when the sensor is transferred from dry fuel to wet fuel. © 2014 Copyright SPIE.
Resumo:
Realizou-se um experimento em um Vertissolo do Submedio Sao Francisco, para avaliar a influencia de fontes e niveis de nitrogenio na produtiivdade da cana-de-acucar (Saccharum officinarum L.). O delineamento usado foi o de blocos ao acaso, com tres repeticoes e 14 tratamentos dispostos da seguinte maneira: 0, 40, 80, 120, 160 e 200 kg/ha de N sob a forma de ureia; 40, 80, 120, 160 e 200 kg/ha de N, sob a forma de sulfato de amonio; e 80, 120 e 160 kg/ha de N, sendo 50% sob a forma de ureia aplicada no plantio e 50% sob a forma de sulfato de amonio aplicado 120 dias apos o plantio. Os resultados mostraram que nao houve influencia das fontes de nitrogenio na produtividade da cana. Os niveis de nitrogenio exerceram uma influencia positiva e altamente significativa na produtividade. A dose economica de nitrogenio foi a de 213 kg/ha de N. Houve correlacoes lineares e positivas dos teores de nitrogenio na folha com os niveis de N aplicado e com a produtividade da cana. Nenhuma influencia foi verificada dos niveis de nitrogenio nos teores de acucar da cana.
Resumo:
Sugar esters are substances which possess surfactant, antifungical and bactericidal actions and can be obtained through two renewable sources of raw materials: sugars and vegetable oils. Their excellent biodegradability, allied to lhe fact that they are non toxic, insipid, inodorous, biocompatible, no-ionic, digestible and because they can resist to adverse conditions of temperature, pH and salinity, explain lhe crescent use of these substances in several sections of lhe industry. The objective of this thesis was to synthesize and characterize surfactants and polymers containing sugar branched in their structures, through enzymatic transesterification of vinyl esters and sugars, using alkaline protease from Bacillus subtilis as catalyst, in organic medium (DMF).Three types of sugars were used: L-arabinose, D-glucose and sucrose and two types of vinyl esters: vinyl laurate and vinyl adipate. Aiming to reach high conversions from substrates to products for a possible future large scale industrial production, a serie of variables was optimized, through Design of Experiments (DOE), using Response Surface Methodology (RSM).The investigated variables were: (1) enzyme concentration; (2) molar reason of substrates; (3) water/solvent rale; (4) temperature and (5) time. We obtained six distinct sugar esters: 5-0-lauroyl L-arabinose, 6-0-lauroyl D-glucose, 1'-O-lauroyl sucrose, 5-0-vinyladipoyl L-arabinose, 6-0-vinyladipoyl D-glucose and 1 '-O-vinyladipoyl sucrose, being lhe last three polymerizable. The progress of lhe reaction was monitored by HPLC analysis, through lhe decrease of sugar concentration in comparison to lhe blank. Qualitative analysis by TLC confirmed lhe formation of lhe products. In lhe purification step, two methodologies were adopted: (1) chromatographic column and (2) extraction with hot acetone. The acylation position and lhe chemical structure were determined by 13C-RMN. The polymerization of lhe three vinyl sugar esters was possible, through chemical catalysis, using H2O2 and K2S2O8 as initiators, at 60°C, for 24 hours. IR spectra of lhe monomers and respective polymers were compared revealing lhe disappearance of lhe vinyl group in lhe polymer spectra. The molar weights of lhe polymers were determined by GPC and presented lhe following results: poly (5-0-vinyladipoyl L-arabinose): Mw = 7.2 X 104; PD = 2.48; poly (6-0-vinyladipoyl D-glucose): Mw = 2.7 X 103; PD = 1.75 and poly (1'-O-vinyladipoyl sucrose): Mw = 4.2 X 104; PD = 6.57. The six sugar esters were submitted to superficial tension tests for determination of the critical micelle concentrations (CMC), which varied from 122 to 167 ppm. Finally, a study of applicability of these sugar esters, as lubricants for completion fluids of petroleum wells was' accomplished through comparative analysis of lhe efficiency of these sugar esters, in relation to three commercial lubricants. The products synthesized in this thesis presented equivalent or superior action to lhe tested commercial products
Resumo:
Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.
Resumo:
This research is about producing recombinant Trichoderma reesei endoglucanase Cel7B by using Kluyveromyces lactis, transformed with chromosomally integrated Cel7B cDNA, as a host cell (K. lactis Cel7B). Cel7B is one of the glycoside hydrolyze family of proteins that are produced by T. reesei. Cel7B together with other endoglucanases, exoglucanases, and â-glucosidases hydrolyze cellulose to glucose, which can then be fermented to biofuels or other value-added products. The research objective of this MS project is to examine favorable fermentation conditions for recombinant Cel7B enzyme production and improved activity. Production of enzyme on different types of media was examined, and the activity of the enzyme was measured by using different tools or procedures. The first condition tested for was using different concentrations of galactose as a carbon and energy source; however galactose also acts as a potent promoter of recombinant Cel7B expression in K. lactis Cel7B. The purpose of this method is to determine the relationship between production of enzyme with increasing sugar concentration. The second culture condition test was using different types of media: a complex medium-yeast extract, peptone, galactose (YPGal); a minimal medium-yeast nitrogen base (YNB) with galactose; and a minimal medium with supplement-yeast nitrogen base with casamino acid (YBC), a nitrogen source, with galactose. The third condition was using different types of reactors or fermenters: a small reactor (shake flask) and a larger automated bioreactor (BioFlo 3000 fermenter). The purpose of this method is to determine the quantity of the protein produced by using different environments of production. Different tools to determine the presence and activity of Cel7B enzyme were used. For the presence of enzyme, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used. Secondly, to detect enzyme activity, the carboxymethyl cellulose- 3,5-dinitrosalicylic acid (CMC- DNS) assay was employed. SDS-PAGE showed that the enzyme band was at 67 kDa, which is larger than native Cel7B (52 kDa.), likely due to over glycolylation during post-translational processing in K. lactis. For the different types of media used in our fermentation, recombinant Cel7B was produced from yeast extract peptone galactose (YPGal), and yeast nitrogen base with casamino acid (YBC), but was not produced and no activity was detected from yeast nitrogen base (YNB). This experiment concluded that the Cel7B production requires the amino acid resources as part of fermentation medium. In experiments where recombinant Cel7B net activity was measured at 1% galactose initial concentration in YPGal and YBC media, higher enzyme activity was detected for the complex medium YPGal. Higher activity of recombinant Cel7B was detected for flask culture in 2% galactose compared to 1% galactose for YBC medium. Two bioreactor experiments were conducted under these culture conditions at 30°C, pH 7.0, dissolved oxygen of 50% of saturation, and 250 rpm agitation (variable depending on DO control) K. lactis-Cel7B yeast growth curves were quite reproducible with maximum optical density (O.D) at 600 nm of between 7 and 8 (when factoring dilution of 10:1). Galactose was consumed rapidly during the first 15 hours of bioreactor culture and recombinant Cel7B started to appear in the culture at 10-15 hours and increased thereafter up to a maximum of between 0.9 and 1.6 mg/mL/hr in these experiments. These bioreactor enzyme activity results are much higher than comparable experiments conducted with flask-scale culture (0.5 mg/mL/hr). In order to achieve the highest recombinant Cel7B activity from batch culture of K. lactis-Cel7B, based on this research it is best to use a complex medium, 2% initial galactose concentration, and an automated bioreactor where good control of temperature, pH, and dissolved oxygen can be achieved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Lignin and hemicelluloses are the major components limiting enzyme infiltration into cell walls. Determination of the topochemical distribution of lignin and aromatics in sugar cane might provide important data on the recalcitrance of specific cells. We used cellular ultraviolet (UV) microspectrophotometry (UMSP) to topochemically detect lignin and hydroxycinnamic acids in individual fiber, vessel and parenchyma cell walls of untreated and chlorite-treated sugar cane. Internodes, presenting typical vascular bundles and sucrose-storing parenchyma cells, were divided into rind and pith fractions. Results: Vascular bundles were more abundant in the rind, whereas parenchyma cells predominated in the pith region. UV measurements of untreated fiber cell walls gave absorbance spectra typical of grass lignin, with a band at 278 nm and a pronounced shoulder at 315 nm, assigned to the presence of hydroxycinnamic acids linked to lignin and/or to arabino-methylglucurono-xylans. The cell walls of vessels had the highest level of lignification, followed by those of fibers and parenchyma. Pith parenchyma cell walls were characterized by very low absorbance values at 278 nm; however, a distinct peak at 315 nm indicated that pith parenchyma cells are not extensively lignified, but contain significant amounts of hydroxycinnamic acids. Cellular UV image profiles scanned with an absorbance intensity maximum of 278 nm identified the pattern of lignin distribution in the individual cell walls, with the highest concentration occurring in the middle lamella and cell corners. Chlorite treatment caused a rapid removal of hydroxycinnamic acids from parenchyma cell walls, whereas the thicker fiber cell walls were delignified only after a long treatment duration (4 hours). Untreated pith samples were promptly hydrolyzed by cellulases, reaching 63% of cellulose conversion after 72 hours of hydrolysis, whereas untreated rind samples achieved only 20% hydrolyzation. Conclusion: The low recalcitrance of pith cells correlated with the low UV-absorbance values seen in parenchyma cells. Chlorite treatment of pith cells did not enhance cellulose conversion. By contrast, application of the same treatment to rind cells led to significant removal of hydroxycinnamic acids and lignin, resulting in marked enhancement of cellulose conversion by cellulases.
Resumo:
Brewer`s spent grain components (cellulose, hemicellulose and lignin) were fractionated in a two-step chemical pretreatment process using dilute sulfuric acid and sodium hydroxide solutions. The cellulose pulp produced was hydrolyzed with a cellulolytic complex, Celluclast 1.5 L, at 45 degrees C to convert the cellulose into glucose. Several conditions were examined: agitation speed (100, 150 and 200 rpm), enzyme loading (5, 25 and 45 FPU/g substrate), and substrate concentration (2, 5 and 8% w/v), according to a 2(3) full factorial design aiming to maximize the glucose yield. The obtained results were interpreted by analysis of variance and response surface methodology. The optimal conditions for enzymatic hydrolysis of brewer`s spent grain were identified as 100 rpm, 45 FPU/g and 2% w/v substrate. Under these conditions, a glucose yield of 93.1% and a cellulose conversion (into glucose and cellobiose) of 99.4% was achieved. The easiness of glucose release from BSG makes this substrate a raw material with great potential to be used in bioconversion processes.
Resumo:
Riparian forests are protected by Brazilian law to preserve rivers and their margins. A sugar cane field adjacent to a strip of young riparian forest bordering an older riparian forest along a stream was used to study the riparian forest as a buffer zone to prevent pesticides pollution. Concentrations of the herbicides diuron, hexazinone and tebuthiuron were determined in different soil layers of a Red Yellow Oxisol during 2003 and 2004. The determination was done by High Performance Liquid Chromatography with reverse phase C-18 column, through two mobile phases. Diuron and hexazinone concentration diminished between the sugar cane and riparian forest as buffer strip demonstrating a protective effect. However, tebuthiuron had about four times higher concentrations in the old riparian forest compared to the other areas. Concentrations were higher in the surface and decreased in deeper soil layers in the old riparian forest suggesting that this herbicide probably was introduced by air pollution. This pesticide concentrated in the canopy could be washed by rain to the soil adjacent to the stream. Our data suggest that climate conditions were responsible for enhanced volatilization exposing the old riparian forest to more air pollution that was captured by the higher canopy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The complex and variable composition of honey, depending on source, season and processing, means different honey samples could cause variation in the characteristics of the finished product. The objective of this study was to determine how the minor components present in honey affect starch gelatinization. A Rapid Visco Analyser was used to measure changes in viscosity when unmodified maize starch was gelatinized in a honey or model sugar solution. When honey was compared to equivalent blends of sugars, there was an increase in starch viscosity with increasing levels of addition. However, at the same level, honey gave a lower viscosity than the blends of sugars. Honeys from different sources (differing in pH and amylase activity) show a varied effect on starch gelatinization, with starch viscosity increasing with addition level for six of the honeys, but decreasing with increasing addition level for two honey samples. Varying the pH also produced variation in starch gelatinization patterns between honey types. Between pH 3.0 and 4.0, starch viscosity was similar for all four honey types studied, while above this pH there were differences between all honey types. As expected, starch viscosity decreased as the solution pH neared the optimum for honey amylase activity (pH 5.3-5.6), though it did not increase as the pH moved away from the honey amylase activity optimum. Differences between honey samples, and between honey and a model sugar mixture, in their effect on starch gelatinization was attributed to honey amylase activity and the composition and concentration of minor organic compounds present. Crown Copyright (C) 2003 Published by Elsevier Ltd. on behalf of Swiss Society of Food Science and Technology
Resumo:
The impact of particle emissions by biomass burning is increasing throughout the world. We explored the toxicity of particulate matter produced by sugar cane burning and compared these effects with equivalent mass of traffic-derived particles. For this purpose, BALB/c mice received a single intranasal instillation of either distilled water (C) or total suspended particles (15 mu g) from an urban area (SP group) or biomass burning-derived particles (Bio group). Lung mechanical parameters (total, resistive and viscoelastic pressures, static elastance, and elastic component of viscoelasticity) and histology were analyzed 24h after instillation. Trace elements and polycyclic aromatic hydrocarbons (PAHs) metabolites of the two sources of particles were determined. All mechanical parameters increased similarly in both pollution groups compared with control, except airway resistive pressure, which increased only in Bio. Both exposed groups showed significantly higher fraction area of alveolar collapse, and influx of polymorphonuclear cells in lung parenchyma than C. The composition analysis of total suspended particles showed higher concentrations of PAHs and lower concentration of metals in traffic than in biomass burning-derived particles. In conclusion, we demonstrated that a single low dose of ambient particles, produced by traffic and sugar cane burning, induced significant alterations in pulmonary mechanics and lung histology in mice. Parenchymal changes were similar after exposure to both particle sources, whereas airway mechanics was more affected by biomass-derived particles. Our results indicate that biomass particles were at least as toxic as those produced by traffic. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
ABSTRACT At poor conditions of nitrogen (N) in the soil, potato plants may accumulate starch in leaves and be indicative of N nutritional stress. The objective of this work was to determine the effects of N rates (0, 50, 100, 200 and 300 kg ha-1 of N) on the concentrations of carbohydrates (total soluble sugars-TSS, reducing sugars-RS, non-reducing sugars-NRS and starch) in the fourth leaf (FL) of two potato cultivars (Asterix and Atlantic) and their critical levels (CL) associated to the N fertilization rate necessary to obtain the maximum physical (MPE) and economic (MEE) efficiency of tubers. A randomized block design with four replications was used in both experiments. On day 21 after plant emergence, four FL were collected from four plants. Potatoes plants fertilized with low rates of N accumulated less TSS in leaves than those properly fertilized. The opposite occurred with content of starch. The cultivars showed similar responses to five doses of N in relation to contents of starch and TSS. However, the response to the increase in doses of N for RS, NRS and Starch/NRS is cultivar-specific. The correlations between contents of RS, NRS and Starch/NRS with the starch and TSS were dependent on the potato cultivar.
Resumo:
Dissertation presented to obtain the Ph.D degree in Molecular Biology
Resumo:
BACKGROUND: Hypoglycaemia is a poor prognostic indicator in severe malaria. Intravenous infusions are rarely feasible in rural areas. The efficacy of sublingual sugar (SLS) was assessed in a pilot randomized controlled trial among hypoglycaemic children with severe malaria in Mali. METHODS: Of 151 patients with presumed severe malaria, 23 children with blood glucose concentrations < 60 mg/dl (< 3.3 mmol/l) were assigned randomly to receive either intravenous 10% glucose (IVG; n = 9) or sublingual sugar (SLS; n = 14). In SLS, a teaspoon of sugar, moistened with a few drops of water, was gently placed under the tongue every 20 minutes. The child was put in the recovery position. Blood glucose concentration (BGC) was measured every 5-10 minutes for the first hour. All children were treated for malaria with intramuscular artemether. The primary outcome measure was treatment response, defined as reaching a BGC of >or= 3.3 mmol/l (60 mg/dl) within 40 minutes after admission. Secondary outcome measures were early treatment response at 20 minutes, relapse (early and late), maximal BGC gain (CGmax), and treatment delay. RESULTS: There was no significant difference between the groups in the primary outcome measure. Treatment response occurred in 71% and 67% for SLS and IVG, respectively. Among the responders, relapses occurred in 30% on SLS at 40 minutes and in 17% on IVG at 20 minutes. There was one fatality in each group. Treatment failures in the SLS group were related to children with clenched teeth or swallowing the sugar, whereas in the IVG group, they were due to unavoidable delays in beginning an infusion (median time 17.5 min (range 3-40).Among SLS, the BGC increase was rapid among the nine patients who really kept the sugar sublingually. All but one increased their BGC by 10 minutes with a mean gain of 44 mg/dl (95%CI: 20.5-63.4). CONCLUSION: Sublingual sugar appears to be a child-friendly, well-tolerated and effective promising method of raising blood glucose in severely ill children. More frequent repeated doses are needed to prevent relapse. Children should be monitored for early swallowing which leads to delayed absorption, and in this case another dose of sugar should be given. Sublingual sugar could be proposed as an immediate "first aid" measure while awaiting intravenous glucose. In many cases it may avert the need for intravenous glucose.