951 resultados para Subsurface drainage.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recession flows in a basin are controlled by the temporal evolution of its active drainage network (ADN). The geomorphological recession flow model (GRFM) assumes that both the rate of flow generation per unit ADN length (q) and the speed at which ADN heads move downstream (c) remain constant during a recession event. Thereby, it connects the power law exponent of -dQ/dt versus Q (discharge at the outlet at time t) curve, , with the structure of the drainage network, a fixed entity. In this study, we first reformulate the GRFM for Horton-Strahler networks and show that the geomorphic ((g)) is equal to D/(D-1), where D is the fractal dimension of the drainage network. We then propose a more general recession flow model by expressing both q and c as functions of Horton-Strahler stream order. We show that it is possible to have = (g) for a recession event even when q and c do not remain constant. The modified GRFM suggests that is controlled by the spatial distribution of subsurface storage within the basin. By analyzing streamflow data from 39 U.S. Geological Survey basins, we show that is having a power law relationship with recession curve peak, which indicates that the spatial distribution of subsurface storage varies across recession events. Key Points The GRFM is reformulated for Horton-Strahler networks. The GRFM is modified by allowing its parameters to vary along streams. Sub-surface storage distribution controls recession flow characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since Brutsaert and Neiber (1977), recession curves are widely used to analyse subsurface systems of river basins by expressing -dQ/dt as a function of Q, which typically take a power law form: -dQ/dt=kQ, where Q is the discharge at a basin outlet at time t. Traditionally recession flows are modelled by single reservoir models that assume a unique relationship between -dQ/dt and Q for a basin. However, recent observations indicate that -dQ/dt-Q relationship of a basin varies greatly across recession events, indicating the limitation of such models. In this study, the dynamic relationship between -dQ/dt and Q of a basin is investigated through the geomorphological recession flow model which models recession flows by considering the temporal evolution of its active drainage network (the part of the stream network of the basin draining water at time t). Two primary factors responsible for the dynamic relationship are identified: (i) degree of aquifer recharge (ii) spatial variation of rainfall. Degree of aquifer recharge, which is likely to be controlled by (effective) rainfall patterns, influences the power law coefficient, k. It is found that k has correlation with past average streamflow, which confirms the notion that dynamic -dQ/dt-Q relationship is caused by the degree of aquifer recharge. Spatial variation of rainfall is found to have control on both the exponent, , and the power law coefficient, k. It is noticed that that even with same and k, recession curves can be different, possibly due to their different (recession) peak values. This may also happen due to spatial variation of rainfall. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of recession flows offers fundamental insights into basin hydrological processes and, in particular, into the collective behavior of the governing dominant subsurface flows and properties. We use here an existing geomorphological interpretation of recession dynamics, which links the exponent in the classic recession curve -dQ/dt - kQ(alpha) to the geometric properties of the time-varying drainage network to study the general properties of recession curves across a wide variety of river basins. In particular, we show how the parameter k depends on the initial soil moisture state of the basin and can be made to explicitly depend on an index discharge, representative of initial sub-subsurface storage. Through this framework we obtain a non-dimensional, event-independent, recession curve. We subsequently quantify the variability of k across different basins on the basis of their geometry, and, by rescaling, collapse curves from different events and basins to obtain a generalized, or `universal', recession curve. Finally, we analyze the resulting normalized recession curves and explain their universal characteristics, lending further support to the notion that the statistical properties of observed recession curves bear the signature of the geomorphological structure of the networks producing them. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systematic monitoring of subsurface hydrogeochemistry has been carried out for a period of one year in a humid tropical region along the Nethravati-Gurupur River. The major ion and stable isotope (delta O-18 and delta H-2) compositions are used to understand the hydrogeochemistry of groundwater and its interaction with surface water. In the study, it is observed that intense weathering of source rocks is the major source of chemical elements to the surface and subsurface waters. In addition, agricultural activities and atmospheric contributions also control the major ion chemistry of water in the study area. There is a clear seasonality in the groundwater chemistry, which is related to the recharge and discharge of the hydrological system. On a temporal scale, there is a decrease in major cation concentrations during the monsoon which is a result of dilution of sources from the weathering of rock minerals, and an increase in anion concentrations which is contributed by the atmosphere, accompanied by an increase in water level during the monsoon. The stable isotope composition indicates that groundwater in the basin is of meteoric origin and recharged directly from the local precipitation during the monsoonal season. Soon after the monsoon, groundwater and surface water mix in the subsurface region. The groundwater feeds the surface water during the lean river flow season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of the formation of periodic segmentation cracks of a coating plated on a substrate with periodic subsurface inclusions (PSI) is investigated. The internal stress in coating and subsequently the strain energy release rate (SERR) of the segmentation cracks are computed with finite element method (FEM). And the effect of the geometrical parameters of the PSI is studied. The results indicate that the ratio of the width of the inclusion to the period of the repeated structure has an optimum value, at which the maximum internal tensile stress and SERR arise. On the other hand, the ratio of the max-thickness of the inclusion to the thickness of the coating has a threshold value, above which the further increase of this ratio should seldom influence the internal stress or the SERR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tensile behaviors of a hard chromium coating plated on a steel substrate with periodic laser pre-quenched regions have been investigated by experimental and theoretic analysis. In the experiment, three specimens are adopted to study the differences between homogeneous and periodic inhomogeneous substrates as well as between periodic inhomogeneous substrate of relatively softer and stiffer materials. The unique characteristics have been observed in the specimen of periodic inhomogeneous substrate under quasi-static tension loading. With the periodic laser pre-quenched regions being treated as periodic subsurface inclusions (PSI), the unique stress/strain pattern of the specimen is obtained by analytical modeling and FEM analysis, and the mechanisms accounting for the experimental results is preliminarily illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contaminant behaviour in soils and fractured rock is very complex, not least because of the heterogeneity of the subsurface environment. For non-aqueous phase liquids (NAPLs), a liquid density contrast and interfacial tension between the contaminant and interstitial fluid adds to the complexity of behaviour, increasing the difficulty of predicting NAPL behaviour in the subsurface. This paper outlines the need for physical model tests that can improve fundamental understanding of NAPL behaviour in the subsurface, enhance risk assessments of NAPL contaminated sites, reduce uncertainty associated with NAPL source remediation and improve current technologies for NAPL plume remediation. Four case histories are presented to illustrate physical modelling approaches that have addressed problems associated with NAPL transport, remediation and source zone characterization. © 2006 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to measure and evaluate relationships between populations of benthic macroinvertebrates and fish, as well as variations in water quality in streams affected by acid Mine drainage. (PDF contains 21 pages)