951 resultados para Structure secondaire de peptide


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The peptide Boc-Gly-Dpg-Gly-Gly-Dpg-Gly-NHMe (1) has been synthesized to examine the conformational preferences of Dpg residues in the context of a poor helix promoting sequence. Single crystals of 1 were obtained in the space group P21/c with a = 13.716(2) Å, b = 12.960(2) Å, c = 22.266(4) Å, and β = 98.05(1)°; R = 6.3% for 3660 data with |Fo| > 4σ. The molecular conformation in crystals revealed that the Gly(1)-Dpg(2) segment adopts φ, ψ values distorted from those expected for an ideal type II‘ β-turn (φGly(1) = +72.0°, ψGly(1) = −166.0°; φDpg(2) = −54.0°, ψDpg(2) = −46.0°) with an inserted water molecule between Boc-CO and Gly(3)NH. The Gly(3)-Gly(4) segment adopts φ, ψ values which lie broadly in the right handed helical region (φGly(3) = −78.0°, ψGly(3) = −9.0°; φGly(4) = −80.0°, ψGly(4) = −18.0°). There is a chiral reversal at Dpg(5) which takes up φ, ψ values in the left handed helical region. The Dpg(5)-Gly(6) segment closely resembles an ideal type I‘ β-turn (φDpg(5) = +56.0°, ψDpg(5) = +32.0°; φGly(6) = +85.0°, ψGly(6) = −3.0°). Molecules of both chiral senses are found in the centrosymmetric crystal. The C-terminus forms a hydrated Schellman motif, with water insertion into the potential 6 → 1 hydrogen bond between Gly(1)CO and Gly(6)NH. NMR studies in CDCl3 suggest substantial retention of the multiple turn conformation observed in crystals. In solution the observed NOEs support local helical conformation at the two Dpg residues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystal structure of beta-hydroxyacyl acyl carrier protein dehydratase of Plasmodium falciparum (PfFabZ) has been determined at a resolution of 2.4 angstrom. PfFabZ has been found to exist as a homodimer (d-PfFabZ) in the crystals of the present study in contrast to the reported hexameric form (h-PfFabZ) which is a trimer of dimers crystallized in a different condition. The catalytic sites of this enzyme are located in deep narrow tunnel-shaped pockets formed at the dimer interface. A histidine residue from one subunit of the dimer and a glutamate residue from the other subunit lining the tunnel form the catalytic dyad in the reported crystal structures. While the position of glutamate remains unaltered in the crystal structure of d-PffabZ compared to that in b-PfFabZ, the histidine residue takes up an entirely different conformation and moves away from the tunnel leading to a His-Phe cis-trans peptide flip at the histidine residue. In addition, a loop in the vicinity has been observed to undergo a similar flip at a Tyr-Pro peptide bond. These alterations not only prevent the formation of a hexamer but also distort the active site geometry resulting in a dimeric form of FabZ that is incapable of substrate binding. The dimeric state and an altered catalytic site architecture make d-PfFabZ distinctly different from the FabZ structures described so far. Dynamic light scattering and size exclusion chromatographic studies clearly indicate a pH-related switching of the dimers to active hexamers. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserv.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The monohydrate of the heptapeptide t-butyloxycarbonyl-(L-valyl-α-aminoiso-butyryl)3-L-valyl methyl ester crystallizes in the orthorhombic space group P212121 with four molecules in a unit cell with the dimensions α= 9.375, b = 19.413 and c = 25.878 ÅA. The structure has been solved by direct methods and refined to an R value of 0.059 for 3633 observed reflections. The molecule in the structure exists as a slightly distorted 310-helix stabilized by five 4 -> 1 intramolecular hydrogen bonds, indicating the overwhelming influence of α-aminoisobutyryl (Aib) residues in dictating helical fold even when a majority of residues in the peptide have a low intrinsic propensity to be in helices. Contrary to what is expected in helical structures, the valyl side chains, two of which are disordered, exhibit all three possible conformations. The molecules arrange themselves in a head-to-tail fashion along the c-axis. The columns thus generated pack nearly hexagonally in the crystal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have synthesised and determined the solution conformation and X-ray crystal structure of the octapeptide Ac-Delta Phe(1)-Val(2)-Delta Phe(3)-Phe(4)-Ala(5)-Val(6)-Delta Phe(7)-Gly(8)-OCH3 (Delta Phe = alpha,beta-dehydrophenylalanine) containing three Delta Phe residues as conformation constraining residues. In the solid state, the peptide folds into (i) an N-terminal (3)10(R)-helical pentapeptide segment, (ii) a middle non-helical segment, and (iii) a C-terminal incipient (3)10(L)-helical segment. The results of H-1 NMR data also suggest that a similar multiple-turn conformation for the peptide is largely maintained in solution. Though the C-terminal helix is incipient, the overall conformation of the octapeptide matches well with the conformation of the hairpins reported. Comparison of the pi-turn seen in the octapeptide molecule with those observed in proteins at the C-terminal end of helixes shows the structural similarity among them. A water molecule mediates the 5 --> 2 hydrogen bond in the pi-turn region. This is the first example of a water-inserted pi-turn in oligopeptides reported so far. Comparison between the present octapeptide and another (3)10(R)-helical dehydro nonapeptide Boc-Val-Delta Phe-Phe-Ala-Phe-Delta Phe-Val-Delta Phe-Gly-OCH3 solved by us recently, demonstrates the possible sequence-dependent conformational variations in alpha,beta-dehydrophenylalanine-containing oligopeptides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

alpha,beta-Dehydrophenylalanine residues constrain the peptide backbone to beta-bend conformation. A pentapeptide containing four consecutive (Delta Phe) residues has been synthesised and crystallised. The peptide Boc-LAla-Delta Phe-Delta Phe-Delta Phe-Delta Phe-NHMe (C45H46N6O7, MW = 782.86) was crystallised from an acetonitrile/methanol mixture. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1) With a = 19.455(6), b = 20.912(9), c = 11.455(4) Angstrom and Z = 4. The X-ray (MoKalpha, lambda = 0.7107 Angstrom) intensity data were collected using the Rigaku-AFC7 diffractrometer. The crystal structure was determined by direct methods and refined using the least-squares technique, R = 8.41% for 1827 reflections with \F-o\ > 4 sigma\F-o\. The molecule contains the largest stretch of consecutive dehydrophenylalanine residues whose crystal structure has been determined so far. The peptide adopts left-handed 3(10)-helical conformation despite the presence of LAla at the N-terminus. The mean phi, psi values, averaged across the last four residues are 56.8 degrees and 17.5 degrees, respectively. There are four 4-->1 intramolecular hydrogen bonds, characteristic of the 3(10)-helix. In the crystal each molecule interacts with four crystallographically symmetric molecules with one hydrogen bond each.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An N-alpha-protected model pentapeptide containing two consecutive Delta Phe residues, Boc-Leu-Delta Phe-Delta Phe-Ala-Phe-NHMe, has been synthesized by solution methods and fully characterized. H-1-nmr studies provided evidence for the occurrence of a significant population of a conformer having three consecutive, intramolecularly II-bonded beta-bends in solution. The solid state structure has been determined by x-ray diffraction methods. The crystals grown from aqueous methanol are orthorhombic, space group P2(1)2(1)2(1),, a = 11.503(2), b = 16.554(2), c = 22.107(3) Angstrom, V = 4209(1) Angstrom,(3) and Z = 4. The x-ray data were collected on a CAD4 diffractometer using CuKalpha radiation (lambda = 1.5418 Angstrom). The structure was determined using direct methods and refined by full-matrix least-squares procedure. The R factor is 5.3%. The molecule is characterized by a right handed 3(10)-helical conformation ((phi) = -68.2 degrees (psi) = -26.3 degrees), which is made up of two consecutive type III beta-bends and one type I beta-bend. In the solid state the helical molecules are aligned head-to-tail, thus forming long rod like structures. A comparison with other peptide structures containing consecutive Delta Phe residues is also provided. The present study confirms that the -Delta Phe-Delta Phe-sequence can be accommodated in helical structures. (C) 1997 John Wiley & Sons, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fragmentation behavior of two classes of cyclodepsipeptides, isariins and isaridins, obtained from the fungus Isaria, was investigated in the presence of different metal ions using multistage tandem mass spectrometry (MS(n)) with collision induced dissociation (CID) and validated by NMR spectroscopy. During MS(n) process, both protonated and metal-cationized isariins generated product ions belonging to the identical `b-ion' series, exhibiting initial backbone cleavage explicitly at the beta-ester bond. Fragmentation behavior for the protonated and metal-cationized acyclic methyl ester derivative of isariins was very similar. On the contrary, isaridins during fragmentation produced ions belonging to the `b' or/and the `y' ion series depending on the nature of interacting metal ions, due to initial backbone cleavages at the beta-ester linkage or/and at a specific amide linkage. Interestingly, independent of the nature of the interacting metal ions, the product ions formed from the acyclic methyl ester derivative of isaridins belonged only to the `y-type'. Complementary NMR data showed that, while all metal ions were located around the beta-ester group of isariins, the metal ion interacting sites varied across the backbone for isaridins. Combined MS and NMR data suggest that the different behavior in sequence specific charge-driven fragmentation of isariins and isaridins is predetermined because of the constituent beta-hydroxy acid residue in isariins and the cis peptide bond in isaridins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rapidly growing structure databases enhance the probability of finding identical sequences sharing structural similarity. Structure prediction methods are being used extensively to abridge the gap between known protein sequences and the solved structures which is essential to understand its specific biochemical and cellular functions. In this work, we plan to study the ambiguity between sequence-structure relationships and examine if sequentially identical peptide fragments adopt similar three-dimensional structures. Fragments of varying lengths (five to ten residues) were used to observe the behavior of sequence and its three-dimensional structures. The STAMP program was used to superpose the three-dimensional structures and the two parameters (Sequence Structure Similarity Score (Sc) and Root Mean Square Deviation value) were employed to classify them into three categories: similar, intermediate and dissimilar structures. Furthermore, the same approach was carried out on all the three-dimensional protein structures solved in the two organisms, Mycobacterium tuberculosis and Plasmodium falciparum to validate our results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structural specificity of α-chymotrypsin for polypeptides and denatured proteins has been examined. The primary specificity of the enzyme for these natural substrates is shown to closely correspond to that observed for model substrates. A pattern of secondary specificity is proposed.

A series of N-acetylated peptide esters of varying length have been evaluated as substrates of α-chymotrypsin. The results are interpreted in terms of proposed specificity theories.

The α-chymotrypsin-catalyzed hydrolyses of a number of N-acetylated dipeptide methyl esters were studied. The results are interpreted in terms of the available specificity theories and are compared with results obtained in the study of polypeptide substrates. The importance of non-productive binding in determining the kinetic parameters of these substrates is discussed. A partial model of the locus of the active site which interacts with the R’1CONH- group of a substrate of the form R’1CONHCHR2COR’3 is proposed.

Finally, some reactive esters of N-acetylated amino acids have been evaluated as substrates of α-chymotrypsin. Their reactivity and stereo-chemical behavior are discussed in terms of the specificity theories available. The importance of a binding interaction between the carboxyl function of the substrate and the enzyme is suggested by the results obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The gene of piscidin, an antimicrobial peptide, has been cloned from the mandarin fish, Siniperca chuatsi. From the first transcription initiation site, the mandarin fish piscidin gene extends 1693 nucleotides to the end of the 3' untranslated region and contains four exons and three introns. A predicted 79-residue prepropeptide consists of three domains: a signal peptide (22 aa), a mature peptide (22 aa) and a C-terminal prodomain (35 aa). The shortage of XQQ motif in the prodomain of mandarin fish piscidin and the similar gene structure between moronecidins (piscidins) and pleurocidins may indicate that they are derived from the same ancestor gene. We thus suggest that piscidin should be used as a terminology for these antimicrobial peptides in the future. The mandarin fish piscidin mRNA was abundant in intestine, spleen, pronephros and kidney analysed by real-time polymerase chain reaction. After stimulation with lipopoly saccharides (LPS), a marked increase in transcripts was observed in most tissues, indicating that piscidin is not only a constitutively expressed molecule, but also has an increased response to bacterial infection. The synthetic, amidated mandarin fish piscidin exhibited different antimicrobial activity against different fish bacterial pathogens, especially against species of Aeromonas, which may to certain extent reflect the pathogenicity of these bacteria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental Raman and FT-IR spectra of solid-state non-deuterated and N-deuterated samples of cyclo(L-Met-L-Met) are reported and discussed. The Raman and FT-IR results show characteristic amide I vibrations (Raman: 1649 cm-1, infrared: 1675 cm-1) for molecules exhibiting a cis amide conformation. A Raman band, assigned to the cis amide II vibrational mode, is observed at sim1493 cm-1 but no IR band is observed in this region. Cyclo(L-Met-L-Met) crystallises in the triclinic space group P1 with one molecule per unit cell. The overall shape of the diketopiperazine (DKP) ring displays a (slightly distorted) boat conformation. The crystal packing employs two strong hydrogen bonds, which traverse the entire crystal via translational repeats. B3-LYP/cc-pVDZ calculations of the structure of the molecule predict a boat conformation for the DKP ring, in agreement with the experimentally determined X-ray structure. Copyright © 2009 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cyclo(L-Glu-L-Glu) has been crystallised in two different polymorphic forms. Both polymorphs are monoclinic, but form 1 is in space group P21 and form 2 is in space group C2. Raman scattering and FT-IR spectroscopic studies have been conducted for the N,O-protonated and deuterated derivatives. Raman spectra of orientated single crystals, solid-state and aqueous solution samples have also been recorded. The different hydrogen-bonding patterns for the two polymorphs have the greatest effect on vibrational modes with N&bond;H and C&dbond;O stretching character. DFT (B3-LYP/cc-pVDZ) calculations of the isolated cyclo(L-Glu-L-Glu) molecule predict that the minimum energy structure, assuming C2 symmetry, has a boat conformation for the diketopiperazine ring with the two L-Glu side chains being folded above the ring. The calculated geometry is in good agreement with the X-ray crystallographic structures for both polymorphs. Normal coordinate analysis has facilitated the band assignments for the experimental vibrational spectra. Copyright © 2009 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A structure-activity study was performed to examine the role of position 14 of human alpha-calcitonin gene-related peptide (h-alpha-CGRP) in activating the CGRP receptor. Interestingly, position 14 of h-alpha-CGRP contains a glycyl residue and is part of an alpha-helix spanning residues 8-18. Analogues [Ala(14)]-h-alpha-CGRP, [Aib(14)]-h-alpha-CGRP, [Asp(14)]-h-alpha-CGRP, [Asn(14)]-h-alpha-CGRP, and [Pro(14)]-h-alpha-CGRP were synthesized by solid phase peptide methodology and purified by RP-HPLC. Secondary structure was measured by circular dichroism spectroscopy. Agonist activities were determined as the analogues' ability to stimulate amylase secretion from guinea pig pancreatic acini and to relax precontracted porcine coronary arteries. Analogues [Ala(1)4]-h-alpha-CGRP, [Aib(14)]-h-alpha-CGRP, [Asp(14)]-h-alpha-CGRP, and [Asn(14)]-h-alpha-CGRP, all containing residues with a high helical propensity in position 14, were potent full agonists compared to h-alpha-CGRP in both tissues. Interestingly, replacement of Gly(14) of h-alpha-CGRP with these residues did not substantially increase the helical content of these analogues. [Pro(14)]-h-alpha-CGRP, predictably, has significantly lower helical content and is a 20-fold less potent agonist on coronary artery, known to contain CGRP-1 receptor subtypes, and an antagonist on pancreatic acini, known to contain CGRP-2 receptor subtypes. In conclusion, the residue in position 14 plays a structural role in stabilizing the alpha-helix spanning residues 8-18. The alpha-helix is crucial for maintaining highly potent agonist effects of h-alpha-CGRP at CGRP receptors. The wide variety of functional groups that can be tolerated in position 14 with no substantial modification of agonist effects suggests the residue in this position is not in contact with the CGRP receptor. [Pro(14)]-h-alpha-CGRP may be a useful pharmacological tool to distinguish between CGRP-1 and CGRP-2 receptor subtypes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We identified nine small-molecule hit compounds of Heat shock 70 kDa protein 5 (HSPA5) from cascade in silico screening based on the binding modes of the tetrapeptides derived from the peptide substrate or inhibitors of Escherichia coli HSP70. Two compounds exhibit promising inhibition activities from cancer cell viability and tumor inhibition assays. The binding modes of the hit compounds provide a platform for development of selective small molecule inhibitors of HSPA5. (C) 2013 Elsevier Ltd. All rights reserved.